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1. Introduction and motivation

The AdS/CFT correspondence [1 – 3] can be generalized to a duality between conformal

field theories with defects and D-brane configurations in Anti de Sitter space (AdS) which

typically wrap AdS subspaces of the ambient AdS [5 – 7]. One important example of this

duality arises by considering Dp-branes which intersect Nc D3-branes in the large Nc limit.
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At weak ’t Hooft coupling this system is described by a defect in the N = 4 SYM conformal

theory on the D3-branes. At strong couping it is described by a geometry in which the

Dp-brane wraps a subspace of the AdS5 × S5 near-horizon geometry of the D3-branes.

Such systems and their generalizations to nonconformal theories play an important

role in recent attempts to provide a string theoretic construction of strong coupling dual

descriptions of QCD, but in such models the full structure of the correspondence has not

yet been worked out. One of the motivations for the current research was to work out the

mapping between states and operators in a defect AdS/CFT system with chiral fermions.

Intersections with chiral fermions occur in [4] which involves D8/D4-brane intersections.

The model considered here, involving D7/D3 intersections, is easier to analyze because

of the more direct connection to AdS/CFT. This example was mentioned in [8], but to

our knowledge has not been studied in depth. In fact the details of this correspondence

will appear elsewhere [9] while here we focus on some foundational material needed to

understand the structure of this system from the field theory point of view. The D7/D3

system has a rich web of connections to many other well-studied systems in string theory

including stringy cosmic strings, string defects in N = 4 SYM, F-theory on K3 and its

various dual descriptions, and the matrix theory description of heterotic string theory.

It may also be useful in constructing the elusive instanton corrections to the O7-plane

anomalous couplings [10].

This paper is organized as follows. We start out in the following section by describing

the system we will be studying and reviewing some of the relevant material on D7-branes

and O7-planes and the corresponding supergravity solutions. We then identify the obvi-

ous zero-modes on the 1 + 1-dimensional intersection and study the question of anomaly

cancellation by anomaly inflow. We are led to conclude from this analysis that there must

be additional zero-modes on the D3-branes which are localized near the intersection of the

D3-branes and O7-planes. We then establish the existence of these zero-modes first by

constructing the effective action on the D3-branes and using index theory, and then by

explicit construction. In section 4 we use string dualities and the explicit formulae for the

zero-modes to deduce the dependence of the Type I and heterotic string couplings on the

7-brane moduli.

Much of our analysis becomes trivial in a particular limit where the space transverse to

the D7/O7-planes is compact and the D7-branes and O7-planes coincide so that the system

can be studied using the standard perturbative string analysis of orientifolds. In fact in

that case the system is T -dual to a D1-string in Type I theory. Our analysis is however

more general and allows us to also analyze the system for a noncompact transverse space

and also away from the orientifold limit where one encounters regions of strong coupling.

2. Description of the system

2.1 Stacks of branes and o-planes

We consider a transverse intersection of D3-branes with D7-branes and O7-planes. The

coordinate axes are taken such that the branes span the directions marked in table 1.
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Bulk coordinates are denoted by
0 1 2 3 4 5 6 7 8 9

D7, O7 x x x x x x x x

D3 x x x x

Table 1: Brane orientations.

xM , M = 0, . . . , 9 and are divided

into xM = (xm, yα) with m = 0, . . . , 3

and α = 1, . . . , 6. We also use indices

A,B, a, b, and α, β to denote cor-

responding tangent space directions.

We further divide the spacetime directions along the D3-brane into xm = (xµ, z, z̄) with

µ = 0, 1, and z = x2 + ix3. Corresponding tangent space indices are underlined. Lightcone

coordinates x± = x0 ± x1 will also be used. We denote the arbitrary number of D3-branes

by Nc.

In the strict gs = 0 limit, the number of D7-branes and O7-planes can be arbitrary,

but as soon as gs 6= 0 many of these configurations become inconsistent. As we will review

in the next section, one-half BPS 7-brane solutions in supergravity with arbitrary gs only

exist for certain special numbers and combinations of (p, q) type 7-branes. Furthermore, as

soon as gs 6= 0, the full back reaction of the 7-branes on the metric, dilaton, and R-R scalar

(axion) must be considered; there is no α′ → 0 decoupling limit. This is easily seen from

the fact that Newton’s constant in front of the IIB supergravity action and the D7-brane

tension in front of the 7-brane DBI plus WZ action have the same powers of α′. Thus the

solutions will not depend on α′.
There have been many interesting studies of adding flavors to the classic AdS/CFT

correspondence using 7-branes. One can work in the strict gs = 0 probe limit [11], but if

one is interested in subleading effects, the fully back reacted supergravity solution must

be considered [12 – 14]. In general, the exact solution is not known. Note, though, in the

simplest 7-brane background-a Z2 orientifold-a very explicit study of the correspondence

including subleading effects can be made [15]. Even in the more general setting, one can

make much progress for the following reason. The D3-branes in all of these setups are

parallel to the D7-branes and close to or coincident with them. Therefore, one can go a

long way by approximating the supergravity solution in a region near the D7-branes.

Our setup is very different, as the D3-branes are extended in the directions transverse

to the 7-branes. We will want to consider gs 6= 0 as this leads to some interesting results,

and therefore it will be crucial to work with the full 7-brane supergravity solution. Hence,

there will be restrictions on the number and type of 7-brane configurations we can consider.

In this paper we will work in a regime where the D3-branes are well described by an

effective field theory on their worldvolume; in other words we assume gsNc ≪ 1.

2.2 Review of 1/2-BPS seven-brane solutions

A static 7-brane sources the metric and axidilaton τ = C0 + ie−Φ ≡ τ1 + iτ2. The super-

gravity equations of motion of this system, or alternatively the preservation of supersym-

metry, require τ to be a holomorphic1 function of z, and near the source it should behave as

τ ∼ ln (z − z0). The key ingredient to having solutions with a dilaton that does not diverge

1Whether τ must be a holomorphic or anti-holomorphic function depends on one’s definition of positive

orientation, or equivalently on whether one wishes the supersymmetries preserved by the 7-brane to have

positive chirality or negative chirality. Later, we will choose the supersymmetries preserved by the D3-
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as z → ∞ and a finite energy per unit 7-brane volume, is to use the SL(2,Z) invariance

of IIB string theory to allow the axidilaton to make jumps by PSL(2,Z) transformations.

Values of the dilaton that are related by such transformations are physically equivalent.

One can alternatively represent such solutions with a τ(z) that does not have discontinuous

jumps by making use of Klein’s modular j-function-a 1:1 and onto map j : F0 → Ĉ, where

F0 is the fundamental domain of PSL(2,Z). This map is holomorphic everywhere except

at the cusps of F0, at which j(i) = 1, j(ρ) = 0, and j(i∞) = ∞, where ρ = e2iπ/3. Around

these points, j−1 : Ĉ→ F0 behaves as

j−1(z) =











i+
√
z − 1 +O((z − 1)1)

ρ+ z1/3 +O(z2/3)
i

2π log z +O(1/z)

(2.1)

respectively. Around these points τ = j−1(z) has PSL(2,Z) monodromy S, T−1S, and T

respectively, where S, T are the usual generators of SL(2,Z) and Λ =
„

a b

c d

«

∈ PSL(2,Z)

acts on τ via

Λτ ≡ aτ + b

cτ + d
. (2.2)

If we were simply to set τ(z) = j−1(z), the log z behavior looks promising, but the

failure of holomorphicity around z = 0, 1 indicates that SUSY is not globally preserved.

This can be remedied by taking

τ(z) = j−1(f(z)), (2.3)

where f(z) = P (z)/Q(z) is a meromorphic function with the properties

f(z) = 1 + (z − zi)
2 +O((z − zi)

4), near zi such that f(zi) = 1 ,

f(z) = (z − zρ)
3 +O((z − zρ)

6), near zρ such that f(zρ) = 0 .
(2.4)

We also label the poles of f with the notation z
(n)
i∞ ; these points will correspond to locations

of 7-branes. We can assume that P,Q are polynomials of the same degree so that z = ∞
is not a special point of f — this is just a choice of coordinate system. If f has Nf poles,

then the modular invariant and nowhere vanishing metric is given by

ds2 = ηµνdx
µdxν + ea(z,z̄)dzdz̄ + δαβdy

αdyβ , (2.5)

with

ea(z,z̄) = τ2η
2(τ)η̄2(τ̄)

[

1
∏Nf

n=1(z − z
(n)
i∞ )(z̄ − z̄

(n)
i∞ )

]1/12

. (2.6)

branes to be in the (2, 4̄) of the corresponding SO(1, 3) × SO(6), and at the same time declare that the

supersymmetries preserved by the D3/D7 intersection are right-handed with respect to the SO(1, 1) of

the intersection. This puts the four preserved (complex) supercharges in the (−1/2,−1/2, 4̄) of SO(1, 1) ×

SO(2)× SO(6), so that the corresponding spinor parameterizing IIB supersymmetry variations, ǫ, is in the

(1/2, 1/2, 4). Requiring that the supersymmetry variation of the dilatino vanishes then implies that τ must

be anti-holomorhpic.
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This is smooth everywhere except at the z
(n)
i∞ where it behaves like log |z − z

(n)
i∞ |, due to the

factor of τ2. (The explicit factors of (z−z(n)
i∞ )−1/12 cancel out the zeroes of the Dedekind eta

function at these points). These solutions were first constructed in [24] as “stringy cosmic

strings,” before the invention of D-branes, and they were later interpreted as D7-brane

solutions by [25]. A recent analysis is given in [26], whose notation we follow.

The minimum number of poles of such an f satisfying (2.4) is Nf = 6. τ(z) is then a

6:1 wrapping of F0 by Ĉ, holomorphic everywhere except at the z
(n)
i∞ . Note that 6 = 3 · 2 is

the product of orders of monodromies around the cusp points i, ρ of F0. Any f(z) satisfying

the above requirements must in fact have Nf divisible by 6. On the other hand, since τ

goes to a non-zero constant as z → ∞, the metric behaves as

lim
|z|→∞

ea ∼ 1

|z|Nf /6
. (2.7)

It follows that the transverse space is asymptotically conical, with deficit angle δ = (2π)
Nf

12 .

Hence for Nf = 12 the space is asymptotically cylindrical and for Nf > 12 it becomes

compact. For the compact case, it turns out that only Nf = 24 avoids problems at z = ∞.

The transverse space has deficit angle 4π — i.e. it has become an S2 (or CP1). Thus there

are only three values2 Nf can take, 6, 12, 24.

Around the z
(n)
i∞ , τ has monodromy T , so that C0 → C0 +1. Naively then, these points

correspond to the locations of ordinary D7-branes, on which F1-strings (or (p, q) = (1, 0)

strings) end, as they have magnetic R-R 0-form charge 1. However, in constructing these

solutions we have essentially gauged SL(2,Z), which acts on the (p, q) charges of F1/D1

bound states, so this naive intuition turns out to be wrong. Before discussing this, we

mention that [26] has argued that the orbifold points of τ(z) = j−1(z) at z = 0, 1 correspond

to the location of (p,q) 7-branes in a different conjugacy class-i.e. not related to the ordinary

(1,0) 7-branes by an SL(2,Z) transformation. If so, it is possible to construct solutions with

any value of Nf . However, some of these branes, if they exist at all, have negative mass,

and their worldvolume dynamics is not well understood, so we will not consider them.

In fact, it is clear that one can not have 24 D7-branes on a compact (transverse) space,

as there would be nowhere for the field lines to go. If some of the 7-branes are more general

(p,q) 7-branes then we might avoid this inconsistency. By observing that τ(z) is an elliptic

fibration over a CP1 base, (ie. compactification of F-theory on K3), and noting that such a

fibration has only 18 relevant complex moduli to vary, Vafa [27] argued that there are only

18 relative positions3 of 7-branes that can be varied. Even though we have 24 7-branes,

they are not perturbative 7-branes of a given string theory; rather each is a perturbative

2If one allows τ to have nontrivial monodromy around z = ∞, then it is possible to have other values

of Nf that are divisible by only 3 or 2. However, this is accomplished by setting zρ = ∞ or zi = ∞. As

a result, τ is everywhere constant and equal to ρ or i. Thus these solutions are nonperturbative in nature

and we do not consider them.
3For the configurations we will consider, the 18 complex moduli are accounted for as follows. We have

the positions of 4 O7-planes and 16 D7-branes, as well as the asymptotic value of the axidilaton, giving 21

free complex parameters. However, 3 of the 7-brane positions can be fixed arbitrarily using the SL(2,C)

coordinate transformations on CP1, leaving us with 18 physical moduli.
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7-brane of some (p, q) theory. Near each one we can use a perturbative description of the

(p, q) theory, but in going from one (p, q) theory to another, one may double count states

— there is no globally perturbative description in the generic case. It turns out that one

can take at most 16 7-branes to be D-branes of a given (p, q) theory, say the (1, 0) theory.

This argument breaks down in the Nf = 6, 12 cases since the field lines can run off to

infinity. Nonetheless, by examining the explicit solution, in say the Nf = 6 case, one can

see that there are regions where e−Φ ∼ 1. One can have at most four ordinary D7-branes

in a region of e−Φ ≪ 1. A better description in the region of the other two 7-branes is in

terms of SL(2,Z) transformed 7-branes [26]. Similarly, in the Nf = 12 case, one can have

at most 8 ordinary D7-branes.

One can consider special configurations of 7-branes (in the compact or noncompact

case) where the axidilaton is everywhere constant [28, 29]. These correspond to taking cer-

tain combinations of (p, q) branes coincident and can be classified by orbifold limits of K3.

We will restrict attention to to those solutions that have a perturbative description in

gs. In the constant axidilaton case, with Nf 7-branes, such solutions correspond to Nf/6

sets of 7-branes, each of which can be viewed as 4 ordinary D7-branes coincident with an

O7-plane. More precisely, the O7-plane is an O7− plane, with a charge of −4 relative to

a D7-brane, and such that the gauge group on the 4D7 + O7− worldvolume is SO(8). τ

is everywhere constant and can take on any value; thus there exists a gs → 0 limit. Note,

though, that even in this limit, the metric is nontrivial. It can be made locally flat, but

globally it still has a deficit angle. The compact case is convincingly argued by Sen [23] to

be dual to Type I and heterotic with the gauge group broken to SO(32) → SO(8)4.

We will also consider deformations of these solutions obtained by pulling the 4 D7-

branes off of the O7-plane. These solutions have a varying axidilaton. When this is done,

the O7-plane splits nonperturbatively into two (p, q) branes. This was studied by Sen [23],

who related the moduli space of the system to that of N = 2 Seiberg-Witten theory with

four flavors [31]. The splitting can also be seen from the supergravity solutions of [26].

However, the region of strong coupling remains localized and is shielded by the four D7-

branes. The string coupling remains small away from the system (and in the immediate

vicinity of the D7-branes where τ2 → ∞). By encircling it at a safe distance one can

measure its charge to be that of an O7− plane. Around this region of an “effective” O7-

plane, the supergravity solution has monodromy S2 = −1. τ is invariant under S2. For

the D3-brane modes, though, this will play a crucial role in the analysis.

2.3 Strings, symmetries, and supersymmetries

We have four kinds of strings: closed and 7-7, 3-3, and 3-7 open strings. The massless

modes of the closed strings form the IIB supergravity multiplet in the bulk. The massless

7-7 modes form an N = 1, d = 8 hypermultiplet, consisting of one complex scalar, one

Weyl fermion, and the gauge field, all in the adjoint of the gauge group. We denote these

fields as (φ(D7), ψ(D7), A
(D7)
µ,α ). For simplicity in the following discussion, we will focus on

one set of 4 D7’s + O7−. Then if the 4 D7-branes are separated from the O7-plane, the

gauge group is U(4)f , while in the orientifold limit it is enhanced to SO(8)f .

– 6 –
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2.3.1 3-3 strings, monodromy, and the color gauge group

The story of the 3-3 strings is far more interesting. The massless modes form the familiar

content of N = 4 Super-Yang-Mill’s: three complex scalars, four Weyl fermions and the

gauge field. Following4 the notation of [16], we denote the field content as

(M ij , ψi, Am). (2.8)

Here the superscript i, j = 1, . . . , 4 is an index in the 4 of SU(4)R while subscript i, j is

an index in the 4̄. The three complex scalars have been packaged into an antisymmetric

matrix M ij = −M ji that additionally has a reality constraint (M ij)† = 1
2ǫijklM

kl ≡ Mij .

These fields are adjoint valued, but what is the gauge group?

Normally one would expect the gauge group to be U(Nc) for Nc stacked branes, but

what is the effect of the orientifold plane? Around the orientifold plane there is an SL(2,Z)

monodromy S2 = −1. This corresponds to the transformation Ω(−1)FL on closed string

modes of the IIB theory, where Ω is worldsheet orientation reversal and (−1)FL flips the

sign of all Ramond states on the left [23]. For the 3-3 strings it corresponds to Ω, which, for

the massless modes amounts to complex conjugation of the U(Nc) representation and a Z2

action on the string wavefunction. For strings with Neumann boundary conditions the Z2

action is −1, while for strings with Dirichlet boundary conditions it is +1. Hence, Ω gives

a −1 for the gauge field and a +1 for the scalars and fermions in addition to exchanging

the Chan-Paton indices. Modes that propagate around the orientifold plane only come

back to themselves up to this transformation. It is a discrete Z2 gauge symmetry and we

would like to extend the U(Nc) group to include it. This can be done using the following

construction.5

Automorphisms of the Lie algebra of U(Nc) consist of ZNc transformations which

are elements of U(Nc) and hence inner automorphisms, and a Z2 element which acts as

a reflection of the Dynkin diagram and is not an element of U(Nc) and so is an outer

automorphism. Using this Z2 element, which we will call σ, one can construct a semi-

direct product of U(Nc) with Z2, or a Z2 extension of U(Nc) which we will call U(Nc):

1 → U(Nc) → U(Nc) → Z2 → 1 . (2.9)

In terms of group elements, let hi denote elements of U(Nc). We define a multiplication

rule for elements (hi, σ) by

(hi, σ)(hj , σ) = (hih
∗
j , 1), (2.10)

(hi, σ)(hj , 1) = (hih
∗
j , σ), (2.11)

(hi, 1)(hj , σ) = (hihj , σ). (2.12)

One can easily check that this defines a group which we call U(Nc).

Since we are going to consider string defects (the D3/O7 intersections) in N = 4

SYM’s with holonomy corresponding to σ ≡ Ω, we, according to the philosophy of discrete

4Except that the fermions are in the 4 of SU(4)R and the supercharges are in the 4̄ in our conventions.
5We thank G. Moore for explaining this to us.
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gauge symmetry, declare that our gauge group is H = U(Nc). Furthermore, since σ

takes representations to their complex conjugates, we can view it as a generalized charge

conjugation operator of the type studied in [35], and therefore strings with σ holonomy

should be thought of as Alice strings [32 – 34].

In the presence of solitons there can be obstructions to the global extension of the local

symmetry group H so that only some subgroup H̃ ⊂ H is the group of globally well-defined

symmetries [32, 36 – 38]. Following the discussion in section 2 of [39], a string in a theory

with unbroken gauge group H and holonomy U(2π) has a globally defined subgroup H̃

which is the centralizer of U(2π) in H. For the strings considered here with U(2π) = σ

and H = U(Nc) this subgroup is the set of (h, s) ∈ H with s = 1, σ obeying

(1, σ)(h, s) = (h, s)(1, σ) (2.13)

which implies that h = h∗. Since h ∈ U(Nc), this implies that hT = h−1, that is that

h ∈ O(Nc). Thus the globally defined group is H̃ = O(Nc) × Z2 (the product is now

direct since σ acts trivially on h ∈ O(Nc)). Under this subgroup, the adjoint of U(Nc)

decomposes into the symmetric plus antisymmetric tensor representation of O(Nc).

2.3.2 3-7 strings and preserved supersymmetry

Consider the D7/D3 intersection. The number of Dirichlet-Neumann plus Neumann-

Dirichlet directions is eight. The system is supersymmetric, preserving 1/4 of the IIB

supercharges; however, the NS zero-point energy is 1/2 so there are only Ramond ground

states. After imposing the GSO projection, these form a single Weyl spinor of Spin(1, 1),

transforming in the (Nc, 4̄) of O(Nc)×U(4)f (or the (Nc,8) of O(Nc)×SO(8)f ). How can

supersymmetry be preserved if the massless spectrum on the intersection has only fermionic

degrees of freedom? The fermion must be a singlet under the supersymmetry action. We

will take the fermion to be left-handed, denoting it qL. Then from the 1 + 1-dimensional

point of view, the supersymmetry is N = (0, 8); all of the supercharges are right-handed.

We denote them by QRi, Q
†i
R.

Finally, the ten-dimensional local Lorentz symmetry of IIB is broken down to SO(1, 1)×
SO(2)×SO(6) by this setup. The SO(2), corresponding to rotations in the plane transverse

to the 7-branes, is only preserved in the maximally symmetric case where all D7-branes

and O7-planes coincide. The transformation properties of the 3-3 modes, 3-7 modes, and

supercharges under the full symmetry group are listed in table 2.

3. Anomalies, the effective action, and D3-brane zero-modes

Having described the system we will be studying we would like to identify the zero-modes

and hence the low-energy effective action describing massless excitations on the string

intersection. We first present a puzzle, and then resolve it later using both an index theory

calculation and an explicit construction of zero-modes.
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SO(1, 1) × SO(2) × SO(6) O(Nc) × U(4)f (SO(8)f )

M ij (0, 0,6) (N2
c ,1)

ψi (1
2 ,

1
2 ,4) + (−1

2 ,−1
2 ,4) (N2

c ,1)

Aµ, Az,z̄ (1, 0,1), (0,±1,1) (N2
c ,1)

qL (1
2 , 0,1) (Nc, 4̄(8))

QRi, Q
†i
R (−1

2 ,−1
2 , 4̄), (−1

2 ,
1
2 ,4) (1,1)

Table 2: Transformation properties of D3-brane and intersection massless modes and preserved

supercharges. We specify the charges of the fields under the action of the Abelian groups and the

dimensions of their representations for non-Abelian groups.

3.1 An anomaly puzzle

Let us first suppose that the four D7-branes are separated from the O7-plane. The chi-

ral fermions, qL, localized at the D3/D7 intersection have both gauge and gravitational

anomalies. The well established mechanism of anomaly inflow from the D3- and D7-branes

cancels this zero-mode anomaly [17 – 19]; we will not review the details here. However,

consider the D3/O7 intersection. There are (apparently) no zero-modes localized at the

intersection — at least not from open string quantization. (Note also, this is an orientifold,

not an orbifold — there are no twisted closed string sectors). On the other hand, there is

inflow.

The anomalous couplings on the D3-branes and O7-plane [20 – 22] are given by:

SWZ
D3 =

µ3

2

∫

Σ4

NcC4 −G ∧ Y (D3)(0) (3.1)

SWZ
O7 =

µ′7
2

∫

Σ8

C8 −G ∧ Y (O7)(0) , (3.2)

where G is the sum of R-R form field strengths and the Y are characteristic polynomials

Y (D3) = ch(Fc) ∧
√

Â(RTΣ4)

Â(RNΣ4)
, (3.3)

Y (O7) =

√

L̂(RTΣ8/4)

L̂(RNΣ8/4)
. (3.4)

We are using standard conventions in the anomaly literature, where 4π2α′ = 1. This

sets the IIB Dp-brane charge and the constant in front of the supergravity action to

µp = (2κ2
10)

−1 = 2π. The Op-plane charge is given by µ′p = −2p−5µp. We are also

using the descent notation for characteristic classes: Y − Y0 = dY (0), where Y0 is the

constant piece, and under a gauge transformation δY (0) = dY (1). We write Chern classes

without a subscript if they are evaluated in the fundamental representation, and will de-

note the dimension of the representation in the subscript otherwise. L̂ is the Hirzebruch
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L-polynomial and Â the A-roof genus. They can be expanded in Pontryagin classes as

Â(R) = 1 − 1

24
p1(R) + · · · ,

L̂(R/4) = 1 +
1

3 · 42
p1(R) + · · · . (3.5)

Following the standard anomaly inflow analysis, the gauge variation of the action is given

by 2π times the integral over the intersection of the descent of an anomaly polynomial:

δSWZ = 2π
∫

I(1), where

Iinf.D3/O7 = −(2κ2
10)

µ3µ
′
7

2(2π)
(Y (D3)Ỹ (O7) + Y (O7)Ỹ (D3))

= 2(Y (D3)Ỹ (O7) + Y (O7)Ỹ (D3)). (3.6)

Here, Ỹ is given by conjugating the representation of the gauge group in Y , but this will not

make a difference in our case. Since our intersection is two-dimensional, we are interested

in the 4-form part

I
inf.D3/O7
4 = 4c2(Fc) + 4Nc

(

− 1

48
p1(RTΣ4) +

1

48
p1(RNΣ4) +

+
1

96
p1(RTΣ8) − 1

96
p1(RNΣ8)

)

. (3.7)

Let us decompose the ten-dimensional tangent bundle according to TM = TSO(1,1) ⊕
NSO(6) ⊕ ÑSO(2), and use p1(E ⊕ F ) = p1(E) + p1(F ) to arrive at

I
inf.D3/O7
4 = 4c2(Fc) −

Nc

24
p1(TSO(1,1)) +

Nc

8
p1(NSO(6)) −

Nc

8
p1(ÑSO(2)). (3.8)

One may raise objections to this analysis. As we reviewed above, Sen [23] has shown

that when separating the D7-branes from the O7-plane, the region near the O7-plane

has e−Φ ∼ 1. Nonperturbative effects cause the O7-plane to be split into two SL(2,Z)

transformed 7-branes. Nonetheless, if we circle around the region of strong coupling at a

safe distance, where a perturbative description is valid, it “looks” just like an O7-plane

— it has the same charge and induces the same SL(2,Z) monodromy on the spectrum.

Furthermore, one does not expect well-behaved corrections (perturbative or not) to alter

the result of an anomaly computation.

We can further demonstrate that there is something missing by considering the question

of anomaly inflow and cancellation in the orientifold limit, where the D-branes and O-plane

coincide. In this limit, the string coupling is constant and can be taken arbitrarily small

(to zero, in fact!). The inflow onto the intersection is now a sum of inflows from the D3/O7

intersection and the D3/D7 intersection. The D3/O7 inflow is given above (3.8). We now

have an SO(8) gauge group on the D7-branes; there are eight D7-branes counting their

images. Note, though, with this counting, we must use the Type I charge µ
(I)
p = 1

2µ
(II)
p .

We thus find

Iinf.D3/4D7 = −1

4
(Y (D3)Ỹ (D7) + Y (D7)Ỹ (D3)), (3.9)

– 10 –



J
H
E
P
0
4
(
2
0
0
8
)
0
1
8

with

Y (D7) = ch(Ff ) ∧
√

Â(RTΣ8)

Â(RNΣ8)
, (3.10)

and Y (D3) as before. Note the Chern form in Y (D7) is being evaluated in the 8v of SO(8).

We find the 4-form component of this to be

I
inf.D3/4D7
4 = −4c2(Fc) −

Nc

2
c2(Ff ) +

Nc

6
p1(TSO(1,1)) (3.11)

so that the sum of inflows onto the orientifold intersection is given by

I
inf.D3/4D7
4 + I

inf.D3/O7
4 = −Nc

2
c2(Ff ) +

Nc

8
(p1(TSO(1,1))

+p1(NSO(6)) − p1(ÑSO(2))). (3.12)

Observe that the c2(Fc) anomaly cancels between the the D3/O7 and D3/D7 inflows.

This makes physical sense, of course. This term in the anomaly comes from two places:

the coupling of tr(F 2
c )(0) to G1 in the D3-brane action, and the gauge variation of C8 in

the D7-brane and O7-plane action. But in the orientifold limit, G1, or equivalently G9,

is no longer sourced because the R-R charge cancels locally between the D7-branes and

O7-plane. Thus, there is no C8 one-point coupling in SWZ
D7 + SWZ

O7 , and so dG1 = 0.

There is also a contribution to the anomaly from the 3-7 strings localized on the

intersection. These are left-handed Weyl fermions. The qL transform in the (Nc,8) of

O(Nc) × SO(8) as do the q†L. However, in the orientifold limit, the qL and q†L are related

by the orientifold projection. Worldsheet orientation reversal sends qL to q†L, so only the

linear combination qL + q†L survives.6 This produces an extra factor of 1/2 in the index

formula for the zero-mode anomaly: δSz.m. = 2π
∫

(Iz.m.)(1), with

Iq
4 =

1

2
ch(Nc,8)(Fc ⊕ Ff ) ∧ Â(TSO(1,1))|4

= 4c2(Fc) +
Nc

2
c2(Ff ) − Nc

6
p1(TSO(1,1)). (3.13)

As expected, the zero-mode anomaly precisely cancels the D3/D7 inflow anomaly, and

the D3/O7 inflow remains uncancelled as before:

Iq
4 + I

inf.D3/4D7
4 + I

inf.D3/O7
4 = I

inf.D3/O7
4 . (3.14)

Clearly something is missing. As we will see, the correct resolution of this puzzle will

depend on the value of Nf . First, however, let us give a more detailed description of this

system that will be useful in the following.

6This 1/2 can also be understood as follows. Moving the D7-branes to the O7-plane should not produce

any new massless 3-7 modes. (There are no stretched strings to become massless as in the 7-7 case). Before

moving the D7’s to the O7 we had 2 · 4Nc 3-7 states. Now we still have 8Nc states.
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3.2 Low energy effective action

In this section we would like to write down an effective action governing fluctuations of the

system about the supergravity background discussed above. We will work in the low-energy

limit α′ → 0. In this limit the fluctuations of bulk and 7-brane modes decouple from the

rest of the system, and we will not consider them further.

The action for the 3-7 strings is7

S3-7 =
1

2π

∫

I
d2xq̄γµ

(2)(i∂µ −Aµ +AD7
µ )L(2)q . (3.15)

The q have indices in the bi-fundamental of O(Nc) × U(4)f (or O(Nc) × SO(8)f ) that are

suppressed. After canonically normalizing the gauge fields one sees that the coupling to

AD7
µ vanishes as α′ → 0 and the flavor group becomes a global symmetry. For the SO(1, 1)

gamma matrices we take γ0
(2) = iσ2 and γ1

(2) = σ1, so that γ̄(2) = σ3, where the σi are Pauli

matrices. Then L(2)q = 1
2(1 + σ3)q = (qL, 0)

T , so that

S3-7 → 1

2π

∫

I
d2xq†L(i∂− −A−)qL , (3.16)

where ∂− = 1
2(∂0−∂1) etc. Thus, in our conventions, left-handed corresponds to left-moving

in 1 + 1 dimensions, where by “left-moving” we really mean qL = qL(x+). Using the fact

that the qL are supersymmetry singlets, one can verify that, in standard Wess and Bagger

notation, the subset of preserved N = 4, d = 4 supercharges is Qj
2, Q̄2̇j, j = 1, . . . , 4. These

have the anticommutation relations

{Qj
2, Q̄2̇k} = 2P−δ

j
k , (3.17)

ie. they are right-handed.

Next consider the 3-3 strings. We can obtain the low energy effective action by ex-

panding S = SDBI + SWZ in the background of nontrivial metric, dilaton, and axion. The

bosonic part can be obtained by starting from the non-Abelian action given in [40], con-

verting to Einstein frame, and keeping O(α′0) terms. This procedure is straightforward

and we will simply give the result. After converting to our notation we find

Sbos.
3-3 = − 1

2π

∫

d4x
√−gtr

(

1

4
e−ΦFmnF

mn +
1

8
C0ǫ

mnpqFmnFpq +

+
1

2
DmMijDmM ij − 1

4
eΦ[Mij ,Mkl][M

ij ,Mkj ]

)

, (3.18)

where ǫ0123 = (−g)−1/2. Dm is the spacetime and gauge covariant derivative; acting on

scalars it is simply

DmM
ij = ∂mM

ij + i[Am,M
ij ]. (3.19)

One could rescale the scalar fields by M ij → e−Φ/2M ij and identify g2
YM ≡ 2πeΦ. Then

part of the action will have the standard N = 4 form, in a curved spacetime and with

7We assume that, in the compact case, there are no Wilson lines turned on.
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a spacetime dependent g2
YM and θ-angle. However, the derivative on the scalars will also

generate a coupling to ∂mΦ if the dilaton is nonconstant. Thus the effective action is not

quite what one might guess by naively generalizing the usual N = 4 action.

The fermionicDp-brane actions in general bosonic supergravity backgrounds have been

worked out very explicitly to quadratic order in fermions in [41]. They restricted attention

to the Abelian case, but to quadratic order in 3-3 modes, one can trivially generalize to

the non-Abelian case by adding a trace. In other words, their results are applicable up

to three-point couplings of the fermions with the gauge field and the scalars. After some

work, one reduces the general formula of [41], in the case of D3-branes in a background

metric, dilaton, and R-R 1-form field strength, to the following effective action:

Sferm.
3-3 =

i

2π

∫

d4xτ2
√−gtr

(

ψ̄iγ
m(Dm +

i

2
Qm)Lψi

)

+

+O(ψ2A,ψ2M). (3.20)

This is an important result, and we give the details of the calculation in appendix A. There

are a couple of comments to be made. Dm is the spacetime covariant derivative,

Dm = ∂m +
1

4
ωab,mγ

ab , (3.21)

where ωab,m is the usual spin connection associated with the metric. Qm is defined by

Qm ≡ ∂m(τ + τ̄)

2i(τ − τ̄)
. (3.22)

This is the pullback over the spacetime of the Kahler connection Q = 1
2i(∂τKdτ−∂τ̄Kdτ̄ ) on

the special Kahler manifold SL(2,R)/U(1), where K = log τ2 is the Kahler potential [26].

The coupling of the fermions to this connection will play a crucial role in the following.

Later, we will also require the full fermionic action, including the three-point couplings

to the gauge field and the scalars. These couplings can be deduced by using gauge invariance

and requiring that the action reduce to the standard N = 4 case when the axidilaton is

constant. These considerations lead us to

Sferm.
3-3 =

i

2π

∫

d4x
√−gtr

{

τ2

(

ψ̄iγ
m(Dm +

i

2
Qm)Lψi

)

+

+
√
τ2

(

(Lψ)i[(Lψ)j ,Mij ] + (ψ̄R)i[(ψ̄R)j,M
ij ]

)}

, (3.23)

where Dm = Dm + i[Am, ].

3.3 Zero-modes on the D3-brane

IIB string theory is believed to be a consistent, anomaly free theory. Therefore the anomaly

puzzle indicates that (1) we don’t have the proper anomalous couplings for this type of

D-brane/O-plane intersection to give the correct anomaly inflow, and/or (2) we haven’t

accounted for all of the massless, chiral zero-modes localized on the intersection. Let us

first investigate the latter possibility.
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3.3.1 The index calculation

If there are more zero-modes, then they must come from the 3-3 strings. We have already

accounted for the 3-7 strings, and the 7-7 and closed strings decouple, becoming free in the

α′ → 0 limit (while the anomaly inflow to the D3/O7 intersection does not vanish in this

limit). Let us analyze the effective action (3.20) with this in mind.

Since the supergravity background depends only on the transverse coordinates z, z̄, it

will be convenient to work with gamma matrices γa = (γµ, γz, γz̄) satisfying

{γa, γb} = 2







ηµν

0 2

2 0







ab

. (3.24)

From the metric ds2 = ηµνdx
µdxν + ea(z,z̄)dzdz̄, one deduces the vielbeins

eµ = dxµ , ez = ea/2dz , ez̄ = ea/2dz̄ . (3.25)

(Note that this implies ez = 1
2e

a/2dz̄, ez̄ = 1
2e

a/2dz). From these it is straightforward to

obtain

γmωab,mγ
ab = e−a/2(γz∂a+ γz̄∂̄a), (3.26)

where we are using the shorthand ∂ ≡ ∂z, ∂̄ ≡ ∂z̄.

Let us choose a basis for the gamma matrices that is convenient for the decomposition

SO(1, 3) → SO(1, 1) × SO(2):

γµ = 12 ⊗ γµ
(2) , γ2,3 = σ1,2 ⊗ γ̄(2) . (3.27)

Note in particular that

γz ≡ σz ⊗ γ̄(2) =

(

0 2γ̄(2)

0 0

)

, γz̄ ≡ σz̄ ⊗ γ̄(2) =

(

0 0

2γ̄(2) 0

)

. (3.28)

Then the fermionic action becomes

Sferm.
3-3 =

i

2π

∫

d4xτ2
√−gtr

(

ψ̄iODiracLψ
i

)

, with (3.29)

ODirac =

(

γµ
(2)∂µ 2e−a/2(Dz + i

2Qz)γ̄(2)

2e−a/2(Dz̄ + i
2Qz̄)γ̄(2) γµ

(2)∂µ

)

. (3.30)

Now choose the γµ
(2) as before:

γ0
(2) = iσ2 , γ1

(2) = σ1 ⇒ γ̄(2) = σ3 . (3.31)

Then we have

L =

(

L(2) 0

0 R(2)

)

, where L(2) =

(

1 0

0 0

)

, R(2) =

(

0 0

0 1

)

. (3.32)
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Therefore we make the ansatz

Lψi =

(

λi
L+(xµ, z, z̄)

λi
R−(xµ, z, z̄)

)

=











ξi
L(xµ)f+(z, z̄)

0

0

ξi
R(xµ)f−(z, z̄)











. (3.33)

The ξ are one-component complex Weyl fermions in d = 1 + 1 dimensions, while the ±
indicates the sign of the SO(2) charge, consistent with the decomposition 2 → (1

2 )++(−1
2)−

under SO(1, 3) → SO(1, 1) × SO(2). Plugging all of this in, we are left with the action

Sferm.
3-3 = − i

2π

∫

d4xτ2
√−gtr

(

ξ†Li∂−ξ
i
L|f+|2 + ξ†Liξ

i
Re

−a/2f∗+(Dz +
i

2
Qz)f−

+ξ†Riξ
i
Le

−a/2f∗−(Dz̄ +
i

2
Qz̄)f+ + ξ†Ri∂+ξ

i
R|f−|2

)

. (3.34)

Thus we see that the number of left-moving, massless zero-modes is equal to the number

of linearly independent, normalizable solutions to (Dz̄ + i
2Qz̄)f+ = 0, while the number of

right-moving zero-modes equals the number of normalizable solutions to (Dz + i
2Qz)f− = 0.

We can construct the two-dimensional Euclidian Dirac operator and spinor:

/DQ ≡ σz(Dz +
i

2
Qz) + σz̄(Dz̄ +

i

2
Qz̄), f ≡

(

f+

f−

)

. (3.35)

Then the number of left-moving modes (solutions of /DQLf = 0) minus the number of

right-moving modes (solutions of /DQRf = 0) is seen to be equal to the index

ind(i /DQ)(1/2) =
i

2

∫CP1

ch1FQ = − 1

4π

∫CP1

(FQ)zz̄dzdz̄ , (3.36)

where (FQ)zz̄ = ∂zQz̄ − ∂z̄Qz. But this integral can be easily evaluated. Recall that the

supergravity equations of motion imply that τ is an anti-holomorphic function, τ = τ(z̄).

(See Footnote 1 for why we must take τ anti-holomorphic instead of holomorphic). Then

one has

Qz =
∂(τ + τ̄ )

2i(τ − τ̄)
= − ∂(τ − τ̄)

2i(τ − τ̄)
= − 1

2i
∂ log τ2 , (3.37)

Qz̄ =
∂̄(τ + τ̄ )

2i(τ − τ̄)
=
∂̄(τ − τ̄)

2i(τ − τ̄)
=

1

2i
∂̄ log τ2 , (3.38)

and so

(FQ)zz̄ =
1

i
∂∂̄ log τ2 . (3.39)

Now, this is proportional to the volume element on the fundamental domain. Since it is a

modular invariant, we can pull the integral over the complex plane back to an integral over

F0. Recalling that τ(z̄) = j̄−1(f̄(z̄)) wraps the fundamental domain Nf times, we have

ind(i /DQ)(1/2) =
i

4π

∫C ∂̄τ∂τ̄

(τ − τ̄)2
dzdz̄ =

iNf

4π
· i
2

∫

F0

dτ1dτ2
τ2
2

= −Nf

8π
· π
3

= −Nf

24
. (3.40)
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This looks fractional except for the compact case, where Nf = 24. In fact, the form of

the index theorem above (3.36) is only correct on compact manifolds. For the noncompact

cases there is a surface term that must be properly accounted for [42 – 44].

The index theorem we just used assumes that the zero-modes have periodic boundary

conditions: f(e2πiz, e−2πiz̄) = f(z, z̄). However, recall that the 3-3 modes should have aZ2 monodromy around the O7-planes, which acts by worldsheet orientation reversal. In

terms of the globally preserved gauge group O(Nc), we have fermions in the symmetric

plus antisymmetric tensor reps: N2
c = Nc(Nc+1)

2
+ Nc(Nc−1)

2
. Thus there are two cases

to consider. The states in the symmetric tensor representation should have a periodic

wave function, while the states in the antisymmetric tensor representation should have

an antiperiodic wave function. In this way the total state is single valued and thus well

defined.

This last point is somewhat subtle and deserves further comment. Away from the O7-

plane the gauge group on the D3-branes is locally U(Nc). Thus one can, locally, distinguish

between a typical fermionic fluctuation ψ and its conjugate ψ̄. If we run ψ around the O7-

plane it will come back as ψ̄, but the orientifold action does not locally constrain the space

of states. The fermionic zero-mode is different, however. It is, in a sense, a global object; we

will eventually solve for the explicit wavefunction f(z, z̄) and see that it is extended around

the entire O7-plane. As we go around the O7-plane the state must be single valued and,

therefore, must be invariant under the orientifold action. As a consequence, the zero-modes

ξL, ξR should only take values in O(Nc).

We have so far found that there are Nf/24 right-handed zero-modes in the symmetric

tensor representation of O(Nc). Now, antiperiodic boundary conditions can be obtained

from the periodic case by the singular gauge transformation ψp → ψa = e−iθ/2ψp, where

θ(z) = Arg(z) is the azimuthal coordinate. (The sign was determined from the fact that the

periodic zero-mode has SO(2) charge −1/2). Note, though, that we require antiperiodicity

around all of the O7-planes. If there are Nf/6 O7-planes located at positions8 z
(k)
O7 , then

the appropriate gauge parameter is α = 1
2(θ1 + · · · + θNf/6), where θk = θ(z − z

(k)
O7 ). This

corresponds to the transformation i
2Q → i

2Q − i
2(dθ1 + · · · + dθNf /6). This is a singular

transformation because “d2θ”6= 0. It gives a contribution to the field strength localized at

the z
(k)
O7 . We have

indantisym.(i /DQ)(1/2) = indsym(i /DQ)(1/2) −
i

2π

∫C i

2
(d2θ1 + · · · d2θNf /6)

= indsym(i /DQ)(1/2) +
1

4π
(2π)

Nf

6

= indsym(i /DQ)(1/2) +
Nf

12
=
Nf

24
. (3.41)

Thus, in the compact case, there is one left-handed zero-mode, in the antisymmetric tensor

representation of O(Nc).

8Away from the orientifold limit, there are not really O7-planes located at specific points z
(k)
O7 . However,

there are regions of strong coupling that can be made relatively small and thought of as composite O7-

planes. If we only consider loops that go entirely around these regions, they can be approximated as

O7-planes at locations z
(k)
O7 .
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We have been implicitly considering the generic case, where the D7-branes are sepa-

rated from the O7-planes, so that the axidilaton is varying. In the orientifold limit, where

τ becomes constant, one might rashly conclude that the index vanishes. However, as we

bring the D7-branes towards the O7-plane, we are bringing a region where τ → i∞ near

a region where τ ∼ O(1). This corresponds to ∂τ̄ → ∞ in the vicinity of the branes while

∂τ̄ → 0 away from them. Thus it appears that FQ is becoming δ-function localized in

such a way that the index is preserved. This argument is heuristic. On the other hand,

it is born out by an explicit perturbative string theory analysis of the zero-modes in the

orientifold limit.

Let us now briefly review the orientifold limit of the Nf = 24 system and its well

known dual descriptions, as it will be useful in the following. Note also that we will be

focusing on the compact case exclusively in the next few subsections, and we will return

to the noncompact cases at the end of section 3.5.

3.3.2 String dualities and the orientifold limit

The orientifold limit corresponds to an orbifold limit of the CP1 where it becomes equiv-

alent to T 2/Z2. The easiest way to see the zero-modes is by doing T -duality along both

directions of the torus. Note that T -duality is a perturbative symmetry of string theory,

and so maps zero-modes to zero-modes. The D3/D7-O7 intersection is mapped to Nc

D1-strings in Type I on R1,7 × T̃ 2. The 3-7 strings are mapped to 1-9 strings, while the

D3-brane zero-modes are mapped to the massless excitations of 1-1 strings.

The 1 + 1-dimensional theory of massless modes on the worldsheet of Nc coincident

D1-strings in Type I has been well studied in the context of Type I/heterotic duality [45],

and heterotic matrix strings [46 – 49]. It is a theory with (0, 8) supersymmetry, O(Nc)

gauge group, SO(8)R R-symmetry group, and it is uniquely specified by the Yang-Mills

coupling g1. The action is

SD1 = − 1

2π

∫

d2xtr

(

1

4g2
1

FµνF
µν +

1

2
(DµX

I)2 − g2
1

4
[XI ,XJ ]2

+
i

g2
1

λT
LCD−λL + iθT

RCD+θR + 2iλT
LCσ

I [θR,X
I ] − iχ†

LD−χL

)

.

(3.42)

The transformation properties of the field content under the gauge and global symmetries

are given in table 3. The supersymmetry variations can be found in [46]. We have Dµ =

∂µ + i[aµ, ], with aµ a 1 + 1-dimensional gauge field. (aµ, λL) is a gauge multiplet in

the antisymmetric (adjoint) representation of O(Nc) and (XI , θR) is a hypermultiplet in

the symmetric tensor representation. The χ are the supersymmetry singlets coming from

1-9 strings. λL, θR are self-conjugate spinors in the 8s and 8c of SO(8)R respectively;

the subscripts refer to their worldsheet chirality. C is the charge conjugation matrix of

SO(8) acting on both Weyl representations, and the σI are Clebsch-Gordan coefficients for

8s × 8c → 8v, with I an index in the 8v.

In table 3 we also indicate the zero-modes in the D3/D7-O7 system that are T -dual

to the Type I D1-string modes. Note that the assignments λL = (ξi
L, ξ

∗
Li), θR = (ξi

R, ξ
∗
Ri)
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D1

modes
T -dual modes

SO(1, 1)

× SO(8)R
O(Nc) × SO(32)

gauge
aµ

λL

Aµ

ξi
L ⊕ ξ∗Li

(1,1)

(1/2,8s)

(

Nc(Nc−1)
2

,1
)

hyper
XI

θR

(Az, Az̄,M
ij)

ξi
R ⊕ ξ∗Ri

(0,8v)

(−1/2,8c)

(

Nc(Nc+1)
2

,1
)

hyper χL qL (1/2,1) (Nc,32)

Table 3: Field content of Type I D1-string worldsheet theory and the corresponding T -dual modes

in the D3/D7-O7 Type IIB orientifold theory.

are consistent with the decompositions 8s → 4+ + 4̄− and 8c → 4− + 4̄+ under SO(8) →
SO(6)×SO(2). Futhermore, since the ξ only take values in O(Nc) the gauge representation

assignments of λL, θR make sense. The relations aµ ↔ Aµ and XI ↔ (Az, Az̄,M
ij) are

standard from T -duality. They do indicate to us, though, that away from the orientifold

limit we should expect these (nonchiral) bosonic zero-modes as well.

We will explicitly construct and verify all of these zero-modes in the general super-

gravity background away from the orientifold limit in section 3.5. Having deduced the

existence of the 3-3 chiral fermionic zero-modes in the general case from index theory, let

us first return to the anomaly puzzle and try to resolve it.

3.4 Anomaly cancellation in the compact case

We saw in section 3.1 that the zero-mode anomaly from the 3-7 strings, qL, cancels the

anomaly inflow onto the D3/D7 intersection. Now let us consider the anomalies of the 3-3

zero-modes. Recall that the classically preserved symmetries of the system (and hence the

ones that are potentially anomalous) are

SO(1, 1) × SO(6) ×O(Nc) ×Gf , (3.43)

where SO(1, 1) is the structure group of the tangent bundle of the intersection string,

TSO(1,1), SO(6) is the structure group of the normal bundle, NSO(6), of the string in R1,7,

O(Nc) is the globally preserved gauge group of the D3-branes after taking into account

the “Alice string” projection, and Gf is the gauge group of the 7-branes. The 3-3 zero-

modes transform under these symmetries as indicated in the previous section. Hence the

associated anomaly polynomials are

IξL

4 =
1

2
chS(NSO(6)) ∧ chNc(Nc−1)

2

(Fc) ∧ Â(TSO(1,1))|4 , (3.44)

IξR

4 = −1

2
chS(NSO(6)) ∧ chNc(Nc+1)

2

(Fc) ∧ Â(TSO(1,1))|4 , (3.45)
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where S(N) denotes the spinor bundle of N . We can evaluate these explicitly using

chNc(Nc−1)
2

(Fc) =
Nc(Nc − 1)

2
+ (Nc − 2)c2(Fc) + · · · , (3.46)

chNc(Nc+1)
2

(Fc) =
Nc(Nc + 1)

2
+ (Nc + 2)c2(Fc) + · · · , (3.47)

chS(NSO(6)) = 8 + p1(NSO(6)) + · · · (3.48)

to find

IξL

4 =
Nc(Nc − 1)

4
p1(N) + 4(Nc − 2)c2(Fc) −

Nc(Nc − 1)

12
p1(T ), (3.49)

IξR

4 = −Nc(Nc + 1)

4
p1(N) − 4(Nc + 2)c2(Fc) +

Nc(Nc + 1)

12
p1(T ). (3.50)

Adding these together gives

IξL

4 + IξR

4 = −Nc

2
p1(NSO(6)) +

Nc

6
p1(TSO(1,1)) − 16c2(Fc). (3.51)

Observe that this is precisely equal and opposite to four times the inflow onto the inter-

section of the D3-branes with an O7-plane (3.8):

IξL

4 + IξR

4 + 4I
inf.D3/O7
4 = 0 . (3.52)

(We are ignoring the SO(2) term in the inflow because it is not a symmetry of the config-

uration we are considering). In the compact case, there are indeed four O7-planes. Thus

anomaly cancellation can be achieved if the 3-3 zero-modes are symmetrically localized

on each of the O7-planes, such that their net anomaly is divided equally in four ways.

Studying the question of localization requires some knowledge of the explicit zero-mode

wavefunctions. Let us now turn to their construction.

3.5 Explicit zero-mode solutions

Using the effective action presented in section 3.2, one can explicitly solve for both the

bosonic and fermionic zero-modes in the general case, away from the orientifold limit. One

does indeed find unique solutions with the appropriate quantum numbers, corresponding

to the content in table 3. The analysis is detailed and the arguments are subtle at some

points, so we feel it is best to leave the explicit computations to the appendix. Here we will

emphasize one key point that is crucial to the analysis, and we present the results in table 4.

The general strategy for finding massless modes localized along the D3/O7 intersection

is straightforward. One makes the ansatz ΦD3 = φ(xµ)y(z, z̄), where ΦD3 is some D3-brane

field, and solves for y such that the 3+1-dimensional equation of motion for ΦD3 is reduced

to a 1 + 1-dimensional wave equation for φ(xµ). One easily obtains the general solution

for y(z, z̄) in all cases. The powerful tool that allows us to find a unique solution is the

requirement of SL(2,Z) covariance. Generically, y solves an equation Ly = 0 and the

operator L depends on the axidilaton τ . In the supergravity background τ undergoes

various SL(2,Z) monodromies around closed loops, and thus so does L, L → L′. However,
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D1 content zero-mode

gauge field aµ
A+ = c+a+(xµ)

A− = c−
τ2
a−(xµ)

scalars XI

Az = czg(z)X
z(xµ)

Az̄ = c̄z ḡ(z̄)X
z̄(xµ)

M ij = cαρ
αijXα(xµ)

fermions
λL = ξi

L ⊕ ξ∗Li

θR = ξi
R ⊕ ξ∗Ri

f+ = cλ√
τ2

(

g(z)

ḡ(z̄)

)1/4

f− = cθ

(

ḡ(z̄)

g(z)

)1/4

Table 4: The 3-3 string zero-modes. g(z) is the holomorphic function appearing in the metric,

g(z) = η2(τ̄ (z))/(
∏24

n=1(z−z
(n)
i∞ )1/12), and the c are normalization constants to be determined. The

ραij that relate M ij and Xα are the SU(4) Clebsch-Gordan coefficients.

since the background was constructed by gauging SL(2,Z), it follows that y must also

transform in such a way that the equation of motion is invariant: Ly = 0 ⇐⇒ L′y′ = 0.

Requiring that y transforms appropriately allows us to fix a unique solution. Note that

there is also the requirement that φ(xµ) be normalizable to represent a zero-mode. It is a

nontrivial check that the y we fix by SL(2,Z) covariance lead to an action that has finite

integral over the transverse CP1.

Now that we have the explicit 3-3 fermion zero-modes in hand, let us return to the

question of anomaly cancellation one more time. Globally, there is no question; the chiral

zero-modes found above have the right Lorentz and gauge quantum numbers to cancel the

anomaly inflow associated with the intersection of the Nc D3-branes with the 4 O7-planes.

The issue is whether the anomaly cancellation takes place locally. Let us first suppose that

we are away from the orientifold limit. The zero-mode solutions are not really localized at

the intersection of the D3-branes with an O7-plane, as there is no O7-plane. On the other

hand, the solutions are localized symmetrically around the four sets of 4D7 + O7’s. One

can really say no more of the D3/O7 inflow calculation either. The most we can say with

what has been presented so far is that the calculations–zero-modes and anomaly inflow —

are at least consistent with local anomaly cancellation.

We claim that the solutions presented above correctly give the zero-mode wavefunc-

tions, even in the region of strong coupling. This is because they were uniquely fixed by

considerations in the perturbative region, where we know our analysis is valid. On the

other hand, we know that the anomalous couplings on the D7-brane and O7-plane that we

used, (3.10), (3.4), do receive corrections in the local string coupling τ . The exact couplings

are known, to some extent, thanks to the Heterotic/Type I duality. See for instance [29] and

references therein. It would be interesting to see if completely local anomaly cancellation

could be verified using these results, but we will not pursue this here.

Let us make a few comments about the orientifold limit. The axidilaton becomes

constant, so the connection Qm is trivial. There is, however, still an S2 monodromy
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around each of the O7-planes, and the metric is nontrivial. It has the same form, where

we replace

24
∏

n=1

(z − z
(n)
i∞ )1/24 →

4
∏

k=1

(z − z
(k)
O7 )1/4 . (3.53)

In fact, the solutions we derived above for the zero-modes are still valid in this limit. They

solve the equations of motion, have the correct monodromies, and are normalizable. The

factors of τ2 and η(τ̄ ) are now simply constants. Hence, in this limit, we clearly see that

the zero-modes are symmetrically localized at the z
(k)
O7 . This of course is in agreement with

what one finds from a standard perturbative string calculation of the zero-modes in this

limit.

Finally, let us briefly return to the noncompact cases, Nf = 6, 12. We remarked

at the end of the index computation that, on noncompact spaces, there is in general a

boundary term contribution to the index. The boundary is the surface at infinity, and this

contribution can be nonzero if the gauge configuration (Qm in our case) does not fall off

fast enough. We expect that this will be the situation for us. In the Nf = 6, 12 cases, Qm

has nontrivial monodromy9 around z = ∞ and so
∮

S1
∞

Qφ 6= 0. When properly accounted

for, we expect that the boundary contribution will cancel the bulk result in both cases, so

that the index vanishes.

This expectation can be verified by explicit examination of the candidate zero-modes.

Proceeding as before, the general solutions for the transverse wavefunctions would be of

the same form and we would impose the same conditions from SL(2,Z) covariance. This

would uniquely fix candidate solutions — they would be the same ones as in table 4, but

with the “24” in g(z) replaced by a “6” or “12.” Then one quickly sees, following the

analysis in the next section, that these solutions fail to be normalizable. Thus one can

show, by direct computation, that there are no zero-modes.

We have argued that the index can be consistent with this, but what about anomaly

cancellation? If there are no 3-3 string zero-modes in the noncompact cases, what does

one make of the anomaly inflow onto the D3/O7 intersection in these cases? There must

be anomalous boundary WZ couplings for Dp-branes extended in noncompact spaces. We

conclude that these terms must be present here and give a cancelling contribution to the

anomaly inflow, though we do not perform the explicit computation. It is amusing to note

that if one were to take the fractional result of the bulk index computation and conclude

that there is a “fourth of a zero-mode” or “half of a zero-mode” in the Nf = 6, 12 cases,

then the corresponding anomalies, 1
4I

ξL,R or 1
2I

ξL,R , would cancel the “bulk” inflow onto the

intersection of the D3-branes with one or two O7-planes respectively. This is an example

where the bulk contribution to the index matches with the bulk contribution to the inflow,

and thus the boundary contribution to each must match as well.

9This is nicely shown in the analysis of [26]. Referring to the bottom figure on page 26 of that paper,

each set of 4D7+O7’s has a point zi associated with it, about which there is SL(2,Z) monodromy S2. In the

noncompact cases these zi are taken to infinity. Then there will be a monodromy of S2 or S4 around z = ∞

in the Nf = 6, 12 cases respectively. Qm transforms under the double cover of SL(2,Z), (see appendix B),

and so will have monodromy Qm → iQm,−Qm respectively.
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4. Application: moduli dependence of the heterotic string coupling

In this section we evaluate the 3-3 string effective action, given in (3.18) and (3.23), on

the zero-mode solutions found above, and integrate over the transverse CP1 to obtain the

1 + 1-dimensional theory. When combined with the 3-7 string action, (3.16), the result

should be the D1-string worldsheet theory (3.42). However, since we have the explicit

zero-modes, we will be able to carry out this procedure in the general case, away from

the orientifold limit. Thus we will learn how the D1-string Yang-Mills coupling, and by

Heterotic/Type I duality, the heterotic string coupling, depend on the moduli zi∞.

The strategy will be the following. We will fix the normalization constants by canon-

ically normalizing the µ-direction kinetic terms in the 3-3 string effective action. Then

integrating the 3- and 4-point couplings over the CP1 will give us the coupling g1(zi∞). It

will be a very nontrivial check that all of these coefficients can be expressed in terms of a

single g1.

Let us begin with the gauge field action. We momentarily employ indices i, j to run

over z, z̄. Simply by writing Am = (Aµ, Ai), integrating the Chern-Simons-like term by

parts, and using ∂τ = 0, one can show

− 1

2π

∫

d4x
√−gtr

(

1

4
e−ΦFmnF

mn +
1

8
C0ǫ

mnpqFmnFpq

)

=

= − 1

2π

∫

d4xτ2
√−gtr

(

1

4
FµνF

µν +
1

2
DµAiDµAi +

1

4
FijF

ij +

+
1

2
(∂iAµ∂

iAµ + 2∂iAµ[Ai, Aµ]) +
1

2
ǫµνAµǫ

ij(2iQi)DjAν

)

. (4.1)

Evaluating this on the zero-mode solutions in table 4 completely kills the last line, including

the 3-point couplings, and reduces FijF
ij → −[Ai, Aj ][A

i, Aj ]. Hence one is left with

− 1

2π

∫

d4xτ2
√−gtr

(

1

4
FµνF

µν +
1

2
DµAiDµAi − 1

4
[Ai, Aj ][A

i, Aj ]

)

.

(4.2)

Canonically normalizing the kinetic terms10 leads to

c− =
1√
I1
, c+ =

√
I1

volCP1

, cz =
1

√

volCP1

, (4.3)

where

volCP1 =
−i
2

∫C dzdz̄ea , I1 =
−i
2

∫C dzdz̄ eaτ2 . (4.4)

We then nontrivially find that all the 3-point couplings have coefficient g1 and all the

4-point couplings have coefficient g2
1 , where

g1 =

√
I1

volCP1

. (4.5)

10Actually, canonically normalizing the kinetic terms for a+, a− only fixes the product c+c− = (volCP1)−1.

We require that the coefficients of the 3-point couplings a+[a+, a−] and a−[a+, a−] be the same in order to

fix them individually.
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Thus, the gauge field action reduces to

SI = − 1

2π

∫

d2xtr

(

1

4
F(2)µνF

µν
(2) +

1

2
(D(2)µX

i)2 − g2
1

4
[Xi,Xj ]2

)

, (4.6)

with F(2)µν = ∂µaν − ∂νaµ + ig1[aµ, aν ] and D(2)µ = ∂µ + ig1[aµ, ].

The rest of the bosonic Lagrangian is 1
2(DmMij)

2 − 1
4τ2

[Mij ,Mkl]
2. We evaluate this

on the zero-mode solution and find the normalization constants

cα =
1

√

volCP1

. (4.7)

Then the 3- and 4-point couplings take the expected form with g1 given in (4.5). Thus the

action for the scalars reduces to

SII = − 1

2π

∫

d2xtr

(

1

2
(D(2)µX

α)2 − g2
1

2
[Xi,Xα]2 − g2

1

4
[Xα,Xβ ]2

)

. (4.8)

Adding SI and SII gives the bosonic part of the 3-3 zero-mode action

Sbos.
3-3z.m. = − 1

2π

∫

d2xtr

(

1

4
F(2)µνF

µν
(2) +

1

2
(D(2)µX

I)2 − g2
1

4
[XI ,XJ ]2

)

. (4.9)

Now we move to the 3-3 effective fermionic action. First consider the ψ̄γm(Dm +
i
2Qm)Lψ term evaluated on the zero-mode solution. We find

i

2π

∫

d4xτ2
√−gtr

(

ψ̄iγ
m(Dm +

i

2
Qm)Lψi

)

=

= − i

2π

∫

d4xτ2
√−gtr

(

|f+|2ξ†LiD−ξ
i
L + |f−|2ξ†RiD+ξ

i
R +

+if∗+f−e
−a/2ξ†Li[Az, ξ

i
R] + if∗−f+e

−a/2ξ†Ri[Az̄, ξ
i
L]

)

, (4.10)

where, recall,

f+ =
cλ√
τ2

(

g(z)

ḡ(z̄)

)1/4

, f− = cθ

(

ḡ(z̄)

g(z)

)1/4

. (4.11)

Canonically normalizing the kinetic terms we find

cλ =
1

√

volCP1

, cθ =
1√
I2
, (4.12)

where

I2 = − i

2

∫C dzdz̄τ2ea . (4.13)

Then we find that the coefficients of the ξ†Lia−ξ
i
L and ξ†Ria+ξ

i
R terms are both g1. However,

the coefficients of the Yukawa terms, ξ†Li[Az, ξ
i
R] and its conjugate, are both

g′1 =
1√
I2

. (4.14)
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We will address this difference shortly, but let us first finish the dimensional reduction.

The last terms are the Yukawa couplings of the fermions to the scalars M ij . Plugging in

the zero-mode solutions and integrating over the transverse space leads to

i

2π

∫

d4x
√−g√τ2tr

(

(Lψ)i[(Lψ)j ,Mij ] + (ψ̄R)i[(ψ̄R)j ,M
ij ]

)

=

= − i

2π

∫

d2xtr

(

g′1ρ
α
ijξ

i
L[ξj

R,X
α] + g′1ρ

αijξ†Li[ξ
†
Rj ,X

α]

)

. (4.15)

These terms also have the coupling constant g′1 instead of g1. Hence, after some slight

rearranging, we obtain

Sferm.
3-3z.m. = − i

2π

∫

d2xtr

(

ξ†LiD(2)−ξ
i
L + ξ†RiD(2)+ξ

i
R + ig′1ξ

†
Li[ξ

i
R,X

z ]

+ig′1ξ
i
L[ξ†Ri,X

z̄ ] + g′1ρ
α
ijξ

i
L[ξj

R,X
α] + g′1ρ

αijξ†Li[ξ
†
Rj ,X

α]

)

(4.16)

for the 3-3 fermionic zero-mode action.

In order to put this action in an SO(8) invariant form, we take a brief detour through

some gamma matrix definitions. Consider the embedding of SO(6) gamma matrices γα

into SO(8) gamma matrices ΓI according to

Γ1 = σ2 ⊗ 18 , Γ2 = σ1 ⊗ γ̄ , Γ2+α = σ1 ⊗ γα , (4.17)

where γ̄ = −iγ1 · · · γ6. It is straightforward to show that Γ̄ =
∏

ΓI = σ3 ⊗ 18, so that the

SO(8) Dirac spinor decomposes as Ψ = (8s,8c)
T . Then we define σI by

ΓI =

(

0 σI

(σI)† 0

)

. (4.18)

It is clear that these may be viewed as Clebsch-Gordan coefficients for 8s ×8c → 8v. Now,

the γα in turn may be represented using the SU(4) Clebsch-Gordan coefficients,

γα =

(

0 ραij

ρα
ij 0

)

, (4.19)

where, recalling the reality constraint, ρα
ij ≡ (ραij)† = 1

2ǫijklρ
αkl. The ρα also satisfy a

normalization condition ραijρβ
jk + ρβijρα

jk = 2δi
kδ

αβ ; this ensures that the γα satisfy the

Clifford algebra. A specific choice for the ρα exists such that γ̄ = σ3 ⊗ 14, and the SO(6)

charge conjugation matrix C, satisfying C−1γαC = −γαT , CT = C∗ = C, is given by

C = σ1 ⊗ 14. This is the charge conjugation matrix that appears in (3.42). The SO(8)

charge conjugation matrix may be taken as C = 12 ⊗ C.

From these results it follows that

λL =
1√
2

(

ξi
L

ξ∗Li

)

, θR =
1√
2

(

ξi
R

ξ∗Ri

)

(4.20)

– 24 –



J
H
E
P
0
4
(
2
0
0
8
)
0
1
8

are Weyl spinors in the 8s,8c respectively and both self-conjugate, λ∗L = CλL, θ
∗
R = CθR.

It is also straightforward to show that (4.16) may be written as

Sferm.
3-3z.m. = − i

2π

∫

d2xtr

(

λT
LCD(2)−λL + θT

RCD(2)+θR + 2g′1λ
T
LCσ

I [θR,X
I ]

)

. (4.21)

Now observe that after summing the bosonic and fermionic zero-mode actions, and the

3-7 action, (4.9),(4.21),(3.16), and rescaling the gauge multiplet (λL, aµ) → 1
g1

(λL, aµ), we

obtain the D1-string worldsheet action (3.42), if and only if the two couplings g1, g
′
1 are

the same:

Sbos.
3-3z.m. + Sferm.

3-3z.m. + S3-7 = SD1 ⇐⇒ g1 = g′1 . (4.22)

It is well known that the (0, 8) theory (3.42) is completely specified by the gauge coupling.

If the Yukawa term λθX had a different coefficient, supersymmetry would be broken. On

the other hand, we know that the general background we have been studying preserves

these 8 supercharges. Hence it must in fact be the case that g1 = g′1. Let us rephrase this

equality slightly. Let us define the average of a quantity over the CP1 as

〈x〉 =

∫C d2zeax
∫C d2zea

. (4.23)

Then we have

g2
1 =

〈τ−1
2 〉

volCP1

, g′21 =
〈τ2〉−1

volCP1

(4.24)

and the claim is that 〈τ−1
2 〉 = 〈τ2〉−1. In the general case (general elliptically fibered K3), τ

is a very complicated function on the base CP1. We do not know how to do either of these

integrals or why this should be true, yet supersymmetry leads us to conjecture that it is

so! Note, however, that in the orientifold limit, where τ2 becomes constant, it is trivially

true.

Now, from the D1-string point of view, 2πg2
1 is, by definition, the square of the D1-

brane Yang-Mills coupling, which is proportional to the Type I string coupling gs,I . We

have g2
1 = gs,I/(4π

2α′). On the other hand, equation (4.24) is giving g2
1 as a function of

of the 7-brane, or F-theory on K3 moduli (zi∞, gs,I′), (where gs,I′ = limz→∞ τ−1
2 ). Thus,

our result gives part of the map between moduli spaces of Type I on T 2 and F-theory on

K3. The duality of these two theories is argued by going to a special point in the moduli

space, corresponding to the orientifold limit of the 7-brane system, where they are T -dual.

It is easy to check that our result reduces to the well known map there. In the orientifold

limit, τ2 = 1/gs,I′ = const and CP1 becomes a torus. Thus our result follows easily from

the usual relations [45]

RI′,1RI′,2

g2
s,I′

=
RI,1RI,2

g2
s,I

, RI,i =
α′

RI′,i
. (4.25)

In the orientifold limit, it is also possible to explicitly evaluate volCP1, and hence g2
1 ,

as a function of the four z
(k)
O7 . In fact, one can use the SL(2,C) coordinate freedom to
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conveniently fix three of the O7-plane locations. If one takes (z
(1)
O7 , . . . , z

(4)
O7) = (0, z∗, 1,∞),

with z∗ arbitrary, then the result [51] is

volCP1 = Im

(

1√
z∗

2F1(
1
2 ,

1
2 , 1; 1/z

∗)

2F1(
1
2 ,

1
2 , 1; z

∗)

)

. (4.26)

There is also much evidence for the conjectured strong/weak duality between heterotic

and Type I, where the coupling constants are related by gs,h = 1/gs,I . Indeed, it is

convincingly argued in [48, 49] that the D1-string theory (3.42) flows to a strong-coupling

superconformal fixed point, corresponding to fundamental heterotic strings on a certain

orbifold space. Thus we learn how the heterotic string coupling depends on the F-theory

moduli,

gs,h(zi∞, gs,I′) =
1

4π2α′g2
1

=
volCP1

4π2α′〈τ−1
2 〉

. (4.27)

This is part of the map between the moduli spaces of F-theory compactified on an

elliptically fibered K3 and heterotic compactified on T 2. It has been proven in [52] that the

classical moduli spaces of these two theories are isomorphic. They showed that both have

the structure of a certain holomorphic C∗ fibration, which leads to a natural isomorphism

between the two spaces. The classical moduli spaces should well approximate the full

(quantum) moduli spaces in regions where the quantum effects are negligible. These regions

correspond to large volume on the heterotic side and being near the orientifold limit on the

F-theory side. This is precisely the regime where our analysis is valid. We required gs,I′

small in order to have a field theory description of the D3-branes. Combining (4.25) with

the Type I/heterotic relation RI,i = Rh,ig
1/2
s,I implies that

gs,I′ =
α′

Rh,1Rh,2
. (4.28)

Thus gs,I′ small does correspond to the volume of the heterotic torus being large.

Our map should agree with the one presented in [52]. However, their parametrization

of the F-theory moduli space is in terms of periods of the holomorphic two-form on the

K3. It would be interesting to explore the relation between these two parametrizations.

Finally, the map of [52] is more complete, as it specifies how the rest of the heterotic

string moduli, namely the Wilson lines, depend on the K3 data. Indeed, we have neglected

a term in our effective action. Recall that the heterotic sigma model action in a general

background with nontrivial gauge field has a coupling of the current algebra fermions to

the pullback of the gauge field to the worldsheet, roughly λ̄∂XAλ. There should be a

corresponding term in the D1-string action, which would involve a coupling of the χ to the

XI and the background D7-brane gauge field. This term would be present if the gauge field

has nontrivial Wilson lines, and so it should be present for us since, roughly, the Wilson

lines correspond to the location of the D7-branes. One should be able to derive this term

in the D3/D7-O7 picture by computing a disk amplitude with one 3-3, one 7-7, and two

3-7 boundary vertex operators. It would be interesting to do this and see if one can derive

the full map of F-theory and heterotic moduli spaces.
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5. Discussion

In this paper we have have studied in detail the structure of D3-branes intersecting D7-

branes and O7-planes in 1+1-dimensions. We used anomaly arguments, index theory, and

an explicit construction of the zero-modes to show that the D3-brane in this background

has zero-modes which are localized near the O7-planes and, in the compact case, fill out

the multiplets which gives rise to the zero-modes of the heterotic matrix string. Our

results explicitly show that the D3-brane zero-modes are not present in the noncompact

cases. In the compact case, by evaluating the D3-brane effective action on the zero-modes

and integrating over the space transverse to the D7-branes and O7-planes, we obtained

the 1 + 1-dimensional theory of Nc coincident D1-strings in Type I. By carrying out this

procedure away from the orientifold limit, we learned how the Type I string coupling, and

by Type I/heterotic duality, the heterotic string coupling depend on the 7-brane moduli,

or equivalently the moduli of F-theory compactified on K3.

In work to appear we plan to study this system at strong ’t Hooft coupling where it

is described by supergravity on AdS3, in particular by F-theory on AdS3 × S5 ×K3. This

provides an explicit AdS3 dual of the world-sheet CFT of Nc heterotic strings, albeit at

strong string coupling, and should be a useful tool in trying to resolve some of the puzzles

raised recently concerning the structure of this duality [54 – 57]. AdS/CFT duals of matrix

string theory have been discussed previously in [53].
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A. D3-brane fermionic effective action

We begin with the action

Sferm.
D3 =

iTD3

2

∫

d4ξ
√−gtr

(

ȳ(1 − Γ̃D3)(e
−Φ/4Γ̂mD̆m − ∆̆)y

)

. (A.1)

Let us review what these various quantities are, following [41]. We denote by m,n, . . . and

a, b, . . . worldvolume/tangent space indices along the brane, and M,N, . . ., A,B, . . . denote

spacetime/tangent space indices in the bulk. We have

y =

(

y1

y2

)

, (A.2)
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where y1, y2 are each 32-component d = 10 spinors, satisfying Majorana and Weyl con-

straints, both of the same chirality. Also,

Γ̂A =

(

ΓA 0

0 ΓA

)

= I2 ⊗ ΓA , ˆ̄Γ =

(

Γ̄ 0

0 −Γ̄

)

= σ3 ⊗ Γ̄ , (A.3)

where ΓA are the d = 10 gamma matrices and Γ̄ the generalized “γ5.” Γ̃D3 is given by

Γ̃D3 = −iσ2 ⊗ 1

4!
√−g ε

m1···m4Γm1···m4 , (A.4)

where ε0123 = 1 and Γm1···m4 = Γ[m1
· · ·Γm4].

1
2(1 − Γ̃D3) is a kappa symmetry projection

operator that will remove half of the degrees of freedom. Finally, D̆m and ∆̆ are given by

D̆m = 12 ⊗ D̂(0)
m + σ1 ⊗ Ŵm , ∆̆ = 12 ⊗ ∆̂(1) + σ1 ⊗ ∆̂(2) , (A.5)

where

D̂
(0)
(1,2)M = ∂M +

1

4

(

ωAB,M +
1

4
τAB,M

)

ΓAB ≡ D̃M , (A.6)

Ŵ(1,2)M =
1

8

(

∓e3Φ/4G
(1)
A ΓA

)

eΦ/4ΓM , (A.7)

∆̂
(1)
(1,2) =

1

2
e−Φ/4ΓM∂MΦ , (A.8)

∆̂
(2)
(1,2) = ±1

2
e3Φ/4G

(1)
A ΓA . (A.9)

The subscript (1, 2) is correlated with the sign. If the operator acts on y1 the top sign is

chosen, if it acts on y2 the bottom sign is chosen.

One important step has already been taken relative to the formulae presented in [41].

Their results are given in string frame and we have converted to Einstein frame using g
(s)
MN =

eΦ/2g
(e)
MN . In terms of the vielbeins and inverse vielbeins, e

(s)A
M = eΦ/4e

(e)A
M and E

(s)M
A =

e−Φ/4E
(e)M
A . Thus, for instance, one has Γ(s)M = e−Φ/4Γ(e)M and G

(1)(s)
A = e−Φ/4G

(1)(e)
A .

The projector Γ̃D3 is unchanged; the transformation of the vielbeins in Γm1···m4 cancels

the factor coming from
√−g in the denominator. Finally, it can be shown that the spin

connection gets modified: ω
(s)
AB,M = ω

(e)
AB,M + 1

4τ
(e)
AB,M , where τAB,M is defined through

τab,c =
1

2
(χa,bc + χb,ca − χc,ab) , (A.10)

with χa,bc = −χa,cb given by

dΦ ∧ ea =
1

2
χa,bce

b ∧ ec . (A.11)

Now let us simplify this action. We have

1

4!
√−g ε

m1···m4Γm1···m4 =
ea1

m1
· · · ea4

m4

4!
√−g εm1···m4Γa1···a4 = Γ0123 = −iΓ̄(4) ,

(A.12)
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where we’ve defined Γ̄(4) = −iΓ0···3 which anticommutes with all of the Γa and squares to

one. Thus

1 − Γ̃D3 =

(

1 −iΓ̄(4)

−Γ̄(4) 1

)

. (A.13)

Using the fact that the background supergravity fields only depend on directions tangent

to the brane worldvolume, we eventually find

e−Φ/4ΓmD̆m − ∆̆ = e−Φ/4

(

ΓmD̃m − 1
2Γm∂mΦ 1

4e
ΦG

(1)
a Γa

−1
4e

ΦG
(1)
a Γa ΓmD̃m − 1

2Γm∂mΦ

)

. (A.14)

Then one can show

(1 − Γ̃D3)(e
−Φ/4ΓmD̆m − ∆̆) = e−Φ/4

(

ΓmD̃m ΓmD̃m(iΓ̄(4))

ΓmD̃m(−iΓ̄(4)) ΓmD̃m

)

≡ e−Φ/4M , (A.15)

where

D̃m = D̃m − 1

2
∂mΦ − i

4
eΦG(1)

m Γ̄(4) . (A.16)

Now consider the unitary change of variables ỹ = Uy given by
(

ỹ1

ỹ2

)

=
1√
2

(

Γ̄(4) −iΓ̄(4)

Γ̄(4) iΓ̄(4)

)(

y1

y2

)

. (A.17)

Then observe that

UMU † = −
(

ΓmD̃m(1 − Γ̄(4)) 0

0 ΓmD̃m(1 + Γ̄(4))

)

≡ −M̃ . (A.18)

Therefore ȳMy = ¯̃yM̃ỹ. Now note that, if y1, y2 are both left-handed, then ỹ1 = Γ̄(4)(y1 +

iy2) and ỹ2 = Γ̄(4)(y1 − iy2) are also both left-handed since Γ̄(4) commutes with Γ̄. On the

other hand, if the original y1, y2 are each separately Majorana, y1 = CȳT
1 and y2 = CȳT

2 ,

we now have that C ¯̃yT
1 = ±ỹ2 and C ¯̃yT

2 = ±ỹ1, with the sign depending on whether Γ̄(4)

commutes or anticommutes with C(Γ0)T .

Now let us pick a convenient basis for the ΓA and dimensionally reduce to d = 4. Let

Γ0,...,3 = 18 ⊗ γ0,...,3 , Γ4,...,9 = ρ1,...,6 ⊗ γ̄ , (A.19)

where

{γa, γb} = 2ηab14 , {ρα, ρβ} = 2δαβ18 (A.20)

are d = 4 Minkowski and d = 6 Euclidian gamma matrices respectively. There exists a nice

basis11 for the ρα such that the four-dimensional Weyl projector and charge conjugation

matrix are related the their ten-dimensional counterparts by

L(10) =

( 14 ⊗ L(4) 0

0 14 ⊗R(4)

)

, C =

(

0 14 ⊗ c14 ⊗ c 0

)

. (A.21)

11See [16] for instance.
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Then, writing

ỹ1 =

(

ψi
(1)

χ(1)i

)

, ỹ2 =

(

ψi
(2)

χ(2)i

)

(A.22)

with i = 1, . . . 4 the SU(4)R index and each ψi, χi a d = 4 four-component spinor, one sees

that the ten-dimensional Weyl and Majorana conditions reduce to

Lψ(1,2) = ψ(1,2)

Rχ(1,2) = χ(1,2)
and

cψ̄T
(1) = χ(2)

cψ̄T
(2) = χ(1)

. (A.23)

Recalling the form of M̃, and noting that Γ̄(4) = 18 ⊗ γ̄, one now sees that ψ(1) and χ(2)

are projected out. This is the κ-projection working. The action boils down to

Sferm.
D3 =

iTD3

2

∫

d4x
√−ge−Φ/4tr

(

χ̄i
(1)γ

mD̃−
mRχ(1)i + ψ̄(2)iγ

mD̃+
mLψ

i
(2)

)

, (A.24)

where

D̃±
m = D̃m − 1

2
∂mΦ ∓ i

4
eΦG(1)

m (A.25)

comes from γ̄R = −R, γ̄L = L.

Now set the first term equal to minus its transpose and use the charge conjugation

relations (A.23). The minus comes from the fact that the fermions are Grassmann valued.

After carefully moving one of the resulting charge conjugation matrices to the other, one

finds that the D̃m and i
4e

ΦG
(1)
m terms add,12 while the 1

2∂mΦ term cancels out. Thus,

defining ψi ≡ ψi
(2), we obtain

Sferm.
D3 = TD3

∫

d4x
√−ge−Φ/4tr

(

ψ̄iγ
m(iD̃m +

1

4
eΦG(1)

m )Lψi

)

. (A.26)

From the definition of τab,m, (A.10), (A.11), it is straightforward to verify that

1

16
γmτab,mγ

ab =
3

8
γm∂mΦ . (A.27)

Thus by making the field redefinition ψ → e−3Φ/8ψ, we can cancel this factor in the Dirac

operator and obtain an overall factor of e−Φ = τ2 out front. Also, observe that

− i

4
eΦ∂mC0 = − i

4

∂mτ1
τ2

= − i

4

∂m(τ + τ̄)

(−i)(τ − τ̄)
=
i

2
Qm . (A.28)

Finally, the conventions of [41] are such that 2πα′ = 1, and therefore TD3 = 1/2π. Putting

all of this together, we obtain the desired result

Sferm.
3-3 =

i

2π

∫

d4xτ2
√−gtr

(

ψ̄iγ
m(Dm +

i

2
Qm)Lψi

)

+O(ψ2A,ψ2M). (A.29)

12The ∂m term gets a second minus from integration by parts.
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B. Explicit formulae for zero-modes

Having argued for the existence of 3-3 string zero-modes in the compact case using index

theory, string duality, and anomaly cancellation, let us now explicitly construct them. We

will work in the general case with spacetime varying axidilaton, away from the orientifold

limit.

B.1 Left-moving fermionic zero-mode

The transverse wavefunction for the left-moving fermions must satisfy

(

Dz̄ +
i

2
Qz̄

)

f+ = 0 ⇒
(

∂̄ +
1

4
∂̄a+

1

4
∂̄ log τ2

)

f+ = 0 . (B.1)

The general solution is

f+(z, z̄) = c(z)τ
−1/4
2 e−a/4 , (B.2)

where c(z) is an arbitrary holomorphic function. How do we restrict c(z)? For one thing,
∫

d2zτ2e
a|f+|2 must be finite, but there is also another condition. Under a general SL(2,Z)

transformation (2.2), one can verify that

Qm → Qm − ∂mϕ , where ϕ = Arg(cτ + d) = − i

2
log

(

cτ + d

cτ̄ + d

)

. (B.3)

Since we have gauged SL(2,Z) in constructing the supergravity background, the equations

of motion must transform covariantly. Thus we require that13

ψi → eiϕ/2ψi =

(

cτ + d

cτ̄ + d

)1/4

ψi (B.4)

under SL(2,Z). This result agrees with the transformation for the N = 4 supersymmetries

and fermions derived in [50] by other means. Also, observe that under S2 = −1 we have

ψ → iψ. Thus ψ is only invariant under S8 — it transforms under a double cover of

SL(2,Z). It is the same for the dilatino, gravitino and Killing spinor of the supergravity

solution.

This can help us in the following way. In the supergravity background there are

some loops that have nontrivial SL(2,Z) monodromy. Following the arguments in [26]

regarding the Killing spinor, when we demand that the equation of motion transform

covariantly under SL(2,Z), what we are really requiring is that the Lorentz monodromy,

or holonomy, around these closed loops, due to the nontrivial spin connection, cancel the

SL(2,Z) monodromy. In other words, the fermions should have trivial holonomy with

respect to the total connection DQ. We can constrain the zero-mode solution by requiring

that it undergo the correct holonomies around various closed loops in the background.

Therefore, what we now need is a detailed picture of the SL(2,Z) branch cut structure

of the background. The proper way to view the configuration is a generalization of the

13Up to a possible automorphism of the R-symmetry group [50]. We will come to this point shortly.
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bottom picture in figure 3, on page 26 of [26]. Instead of just one 4D7+O7 system, imagine

four of these on the surface of an S2, well separated. The boxed regions have the charge

and monodromy of an O7− plane, and we only consider closed loops that do not intersect

them, thus staying in the perturbative framework. Each set has a point zi associated to it.

These points are not the locations of any branes, but they have monodromy S2 about them.

In a noncompact case, these points would be taken to infinity. In the compact case we take

them all coincident, so that the net monodromy around this point is S8 — i.e. trivial.

Thus we are effectively treating each O7-region as a point z
(k)
O7 , k = 1, . . . , 4, which has

5 branches of SL(2,Z) monodromy emanating from it. Four branches are lines across which

T monodromy occurs and each of these ends on one of the four “satellite” D7-branes. Each

D7-brane is at one of the 24 points z
(n)
i∞ . One branch is a line across which S2 monodromy

occurs, and this line extends to an arbitrary point that we may take far from the O7-

plane for convenience. Note that the arrows in the diagram are also important. The S2

monodromy is associated with a clockwise loop around the O7-plane. A counter-clockwise

loop corresponds to (S2)−1 = S6, which is not the same as S2 in the double cover. Note also

that each O7-region necessarily swallows up two of the z
(n)
i∞ , so that in this approximation

we should take these coincident and equal to the relevant zO7.

Therefore, as we encircle any of the O7-planes in a clockwise fashion, we require that

ψ → iψ. What does this imply for f±? Recall that the connection acts on f+ as (DQ)z̄f+ =

0 and on f− as (DQ)zf− = 0. This means that the Lorentz holonomy of f+ should be

measured by integrating around the loop with respect to dz̄, while the Lorentz holonomy

of f− is measured by integrating around the loop with respect to dz. It follows that we

must have f+ → if+ and f− → −if−. This can also be seen by looking at the equation for

parallel transport, tiDiψ = 0, where ti is a tangent vector to the curve.

We claim that the unique normalizable solution for f+, with all of the correct SL(2,Z)

monodromies, is obtained by taking

c(z) =
η(τ̄ (z))

∏24
n=1(z − z

(n)
i∞ )1/24

. (B.5)

Note that τ̄ is a holomorphic function everywhere except at the z
(n)
i∞ and that η is entire

on F0. Thus η(τ̄ (z)) fails to be holomorphic precisely at the z
(n)
i∞ . Recall that around these

points τ̄ behaves as τ̄ ∼ i
2π log (z − z

(n)
i∞ ), and thus η behaves as (z − z

(n)
i∞ )1/24. Therefore

c(z) is everywhere holomorphic. This c(z) yields

f+(z, z̄) =
1√
τ2

(

η(τ̄ (z))

η̄(τ(z̄))
·
∏24

n=1(z̄ − z̄
(n)
i∞ )1/24

∏24
n=1(z − z

(n)
i∞ )1/24

)1/2

. (B.6)

Around clockwise loops enclosing D7-branes f+ is invariant, as the phase that η acquires

under the T transformation is canceled by the phase coming from the explicit (z − z
(n)
i∞ )

factors, while τ2 is invariant under T . For a clockwise rotation around any loop enclosing

an O7-plane, f+ acquires a phase f+ → eiπ/2f+. Where does this phase come from? The η

functions and τ2 are invariant under the S2 monodromy, but when we enclose an O7-plane

we either enclose 6 of the z
(n)
i∞ or enclose 6 − p of them and cross p lines of T monodromy.
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In either case, the result of this is a net phase for f+ of i. Finally, it is easy to see that the

solution leads to a normalizable mode, as
∫

d2zτ2e
a|f+|2 =

∫

d2zea = volCP1 . (B.7)

We have just argued above that, around an O7-plane, the fermions should transform

via f± → ±if±, and we have found a left-moving zero-mode that does precisely this.

But this does not correspond to either the periodic or anti-periodic boundary conditions

that we considered in the index calculation. Fortunately, there is an ambiguity in the

SL(2,Z) transformation of the fermions. As was pointed out in [50], the transformation

is not unique, but rather can be combined with an automorphism of the supersymmetry

algebra. The Montonen-Olive conjecture states that SL(2,Z) should commute with the

Poincare symmetries, but there is still the global SU(4)R symmetry. The automorphism

of SU(4)R must be an inner automorphism, because the classical theory has no symmetry

that acts trivially on spacetime and by an outer automorphism of SU(4)R. Since inner

automorphisms of a group are generated by its center, the SL(2,Z) action is defined up to

the action of an element of the center of SU(4)R. The center of SU(4)R is generated by the

element J = diag(eiπ/2, eiπ/2, eiπ/2, eiπ/2) which acts as i on the 4 of SU(4)R and as −i on

the 4̄.

Now, both the left- and right-handed modes are in the 4. Hence, the SL(2,Z) phases

around the O7-plane, φ = ±π/2, are only defined up to φ ∼ φ + π/2. In particular,

f+ → if+ is physically equivalent to14

f+ → −f+ . (B.8)

Hence, the left-moving mode has anti-periodic boundary conditions. Therefore it must

transform in the anti-symmetric tensor of O(Nc), as claimed.

B.2 Right-moving fermionic zero-mode

We will be brief here as the analysis is quite parallel. The equation of motion for the

transverse wavefunction is
(

Dz +
i

2
Qz

)

f− = 0 ⇒
(

∂ +
1

4
∂a− 1

4
∂ log τ2

)

f− = 0 , (B.9)

with general solution

f−(z, z̄) = b̄(z̄)τ
1/4
2 e−a/4 , (B.10)

14Note that this does not imply that all phases modulo π/2 are equivalent. When we compute the

SL(2,Z) monodromy around a closed loop, we get a definite answer (modulo 2π). This definite answer

is physically equivalent to a π/2 shift of the same answer. It is not physically equivalent to a shift by π,

or −π/2, etc. A shift by π, for example, would be generated by the element J
2 in SU(4)R. But, as is

also discussed in [50], this corresponds to a Z2 fermion number transformation (−1)F . And this is the Z2

element that is already used to extend SL(2,Z) to its double cover, under which the fermions transform.

Hence this element already commutes with (the double cover of) SL(2,Z), and can not be used to enlarge

the set of physically equivalent phases further. Similarly a shift by −π/2 ∼ 3π/2 would correspond to J
3,

but this must be identified with J and so there is no such shift.
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where b(z) is an arbitrary holomorphic function. The unique normalizable solution with

all of the correct SL(2,Z) monodromies is obtained by taking

b̄(z̄) =
η̄(τ(z̄))

∏24
n=1(z̄ − z̄

(n)
i∞ )1/24

, (B.11)

which yields

f−(z, z̄) =

(

η̄(τ(z̄))

η(τ̄(z))
·
∏24

n=1(z − z
(n)
i∞ )1/24

∏24
n=1(z̄ − z̄

(n)
i∞ )1/24

)1/2

. (B.12)

As we move around a clockwise loop enclosing an O7-plane, we have f− → −if−. This

solution leads to a normalizable mode,

∫

τ2e
a|f−|2 =

∫

τ2e
a <∞ , (B.13)

since τ2(z, z̄) is a function with only logarithmic singularities on CP1. Finally, the mon-

odromy f− → −if− is physically equivalent to

f− → f− . (B.14)

Hence, the right-moving mode has periodic boundary conditions and therefore must trans-

form in the symmetric tensor of O(Nc).

B.3 The 3-3 scalars

The quadratic action for the D3-brane scalars M ij is

S3-3,(quad)[M
ij] = − 1

4π

∫

d4x
√−gtr

(

∂mMij∂
mM ij

)

, (B.15)

which leads to the equations of motion

∂m(
√−ggmn∂nM

ij) = 0 ⇒ (ea∂µ∂
µ + 4∂∂̄)M ij = 0 . (B.16)

Clearly massless modes correspond to ∂∂̄M ij = 0. The general solution is a sum of holomor-

phic and anti-holomorphic functions. Since we are on a compact space, and the equation of

motion has no τ dependence, there exists precisely one normalizable and modular invariant

solution: the constant. This is periodic as we go around the O7-plane, and therefore it

must be in the symmetric tensor of O(Nc). This gives us six real scalars in the symmetric

tensor representation. We expect two more scalars in order to complete the 8v of SO(8)R
in the Type I dual theory, that describes the transverse fluctuations of the D1-string. We

also expect zero-modes that represent a 1+1-dimensional gauge field in the anti-symmetric

tensor representation. All of these remaining modes must come from the 3-3 gauge field.
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B.4 The 3-3 gauge field

The quadratic action for the D3-brane gauge field is

S3−3,(quad)[Am] = − 1

8π

∫

d4x
√−gtr

(

τ2FmnF
mn +

1

2
τ1ǫ

mnpqFmnFpq

)

, (B.17)

where ǫ0123 = (−g)−1/2, and we only need to consider the U(1) part of the field strength:

Fmn = ∂mAn − ∂nAm + O(A2). We integrate by parts in order to put the Lagrangian in

the form AmOmnAn. Doing so, one finds the usual curved space Maxwell operator and,

additionally, terms that are proportional to spacetime derivatives of τ1, τ2. After choosing

the usual covariant Lorentz gauge, DmAm = 0, the action can be put in the form

S =
1

4π

∫

d4xτ2
√−gtrAmOmnAn , with (B.18)

Omn = gmnDpD
p −Rmn + gmn ∂pτ2

τ2
Dp +

∂mτ2
τ2

Dn − Dnτ2
τ2

Dm − Dpτ1
τ2

ǫmnpq∂q . (B.19)

(The term ∂m log τ2D
n gives zero when acting on An, but we choose to keep it because it

will simplify the form of the operator).

We work in lightcone coordinates x± = x0 ± x1, so that the metric is given by ds2 =

−dx+dx− + ea(z,z̄)dzdz̄. After some work one eventually finds the following expression:

Omn = Omn
1+1 + Omn

t (z, z̄), (B.20)

where

(Omn
1+1) = 8











0 ∂+∂− ∂̄ log τ2∂− ∂ log τ2∂−
∂+∂− 0 0 0

−∂̄ log τ2∂− 0 0 −e−a∂+∂−
−∂ log τ2∂− 0 −e−a∂+∂− 0











(B.21)

and

(Omn
t ) = 8e−a

























0
−(∂∂̄ + ∂ log τ2∂̄

+∂̄ log τ2∂)
0 0

−∂∂̄ 0 0 0

0 0 0
e−a(∂̄∂ − ∂̄a∂

+∂̄ log τ2∂)

0 0
e−a(∂∂̄ − ∂a∂̄

+∂ log τ2∂̄)
0

























.

(B.22)

In deriving these expressions we have used the fact that τ(z̄) is an anti-holomorphic function

so, for instance, ∂τ1 = −i∂τ2 etc. Note that the order of the columns and rows in these

matrices is (+,−, z, z̄).
Zero modes are obtained as solutions of

Omn
t An = 0 . (B.23)
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Note we must also make sure that the gauge constraint

DnAn = −2(∂+A− + ∂−A+) + 2e−a(∂Az̄ + ∂̄Az) = 0 (B.24)

can be maintained. We make the ansatz

Am(xµ, z, z̄) = am(xµ)Ψm(z, z̄) (no sum). (B.25)

Then the equations (B.23) are

∂∂̄Ψ+ = 0 , (B.26)

(∂∂̄ + ∂ log τ2∂̄ + ∂̄ log τ2∂)Ψ− = 0 , (B.27)

(∂ − ∂a+ ∂ log τ2)∂̄Ψz = 0 , (B.28)

(∂̄ − ∂̄a+ ∂̄ log τ2)∂Ψz̄ = 0 . (B.29)

Assuming that these equations are satisfied, it is easy to show that the gauge field ac-

tion (B.18) reduces to

S =
2

π

∫

d2zτ2
√−gΨ+Ψ−

∫

d2x

(

a+∂+∂−a− + a−∂+∂−a+

)

+

− 2

π

∫

d2zτ2
√−ge−aΨzΨz̄

∫

d2x

(

az∂+∂−az̄ + az̄∂+∂−az

)

+

+
2

π

∫

d2zτ2
√−g∂ log τ2Ψ+Ψz̄

∫

d2x

(

a+∂−az̄ − az̄∂−a+

)

+ c.c. (B.30)

In order for this to give an effective 1 + 1-dimensional action for massless modes, we

require that the integrals over the transverse space be finite and, additionally, the third

term must vanish. In order for the third term to vanish, there are two disjoint possibilities:

Ψz = Ψz̄ = 0 or Ψ+ = 0 . (B.31)

These will lead to two different sets of zero-modes. We investigate each separately.

B.4.1 The A± zero-modes

This solution corresponds to setting

Ψz = Ψz̄ = 0 . (B.32)

The reality of the gauge field Am implies that φ±,Ψ± may be taken real. The most general

real solutions to the Ψ± equations (B.26), (B.27) are

Ψ+(z, z̄) = ψ+(z) + ψ̄+(z̄), Ψ−(z, z̄) =
1

τ2
(ψ−(z) + ψ̄−(z̄)), (B.33)

where ψ±(z) are arbitrary holomorphic functions of z (possibly involving τ̄(z)). Again,

there are two requirements that will select out a unique solution: the integral over the

transverse space must be finite, and around closed loops Ψ± should undergo monodromies

consistent with their transformations under the corresponding SL(2,Z) actions.
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This brings us to the question of how do Ψ± transform under a general Λ ∈ SL(2,Z).

As in the case of the fermions, we answer this by requiring that the equations of motion

transform covariantly under SL(2,Z). First consider the Ψ+ equation of motion (B.26).

The operator is invariant under SL(2,Z) and so we require Ψ+ to be invariant. Thus ψ+

is a holomorphic function of z only and can not depend on τ̄ . Now consider

(∂∂̄ + ∂ log τ2∂̄ + ∂̄ log τ2∂)Ψ− = 0 . (B.34)

Under general Λ =
„

a b

c d

«

, the differential operator transforms and it is not at all obvious

how Ψ− can transform in order to counter these new terms, and not introduce any others.

We need to write the Ψ− equation in an SL(2,Z) covariant fashion, involving the U(1)

Kahler connection. It is straightforward to show that (B.27) can be written as

(Di − q∗ǫijQj)(Di + qǫikQ
k)Ψ− = 0 , with q = 2i , (B.35)

where i, j = z, z̄ run over the transverse coordinates and ǫij is the Levi-Cevita tensor

density on the transverse 2-manifold. Our conventions will be ǫzz̄ = −ǫz̄z = −√
g, from

which it follows that ǫzz̄ = −ǫz̄z = g−1/2. (If this sign is flipped, then the charge q = 2i

must also change sign). In this form we can now determine the proper transformation of

Ψ− under SL(2,Z). Recalling the transformation law of Qi, (B.3), one has

∆2iǫijQ
j = −2iǫij∂

jϕ =

{

2i∂zϕ, i = z

−2i∂z̄ϕ, i = z̄

=

{

−∂ log (cτ̄ + d), i = z

−∂̄ log (cτ + d), i = z̄
. (B.36)

Hence we require that

∂iΨ− → ∂iΨ− +

{

∂ log (cτ̄ + d), i = z

∂̄ log (cτ + d), i = z̄
. (B.37)

This is achieved with the transformation

Ψ− → elog (cτ+d)+log (cτ̄+d)Ψ− = (cτ + d)(cτ̄ + d)Ψ− . (B.38)

In other words, Ψ− should transform as a modular form of weight (1, 1). As a check, one

could now go back to the original equation (B.27) and see that it does indeed transform

covariantly using this transformation rule. After considerable algebra and some nontrivial

cancellations, one finds that it actually works.

This transformation is consistent with Ψ− = 1/τ2 and therefore we require that ψ−(z)

be independent of τ̄(z). Now we use the requirement of normalizability to fix the functions

ψ±(z). The guage field action evaluated on these zero-modes is

S =
2

π

∫

id2zeaRe(ψ+(z))Re(ψ−(z))

∫

d2x

(

a+∂+∂−a− + a−∂+∂−a+

)

. (B.39)
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Since ea ∼ 1/|z|4 as z → ∞, the only functions ψ± that are entire on C and give a non-zero,

finite result for the integral are

ψ± = const . (B.40)

Thus we arrive at precisely two real massless zero-modes a±, that transform as a vector

under the SO(1, 1) Lorentz group.

Observe that the transverse wavefunctions

Ψ+(z, z̄) = const , Ψ−(z, z̄) =
const

τ2
(B.41)

are periodic around the O7-planes. Indeed, the SL(2,Z) transformations for these wave-

functions indicate that they should be invariant under S2. However, recall that S2 acts

on the string worldsheet as Ω, worldsheet orientation reversal. In addition to flipping the

Chan-Paton indices, this gives a minus sign when acting on the string modes correspond-

ing to the gauge field. Thus, in order for the overall state to be single-valued around the

O7-planes, these zero-modes must transform in the anti-symmetric tensor of O(Nc). Thus,

as one would expect, the zero-modes of the (A+, A−) components of the 3-3 gauge field

correspond to the 1 + 1-dimensional gauge field on the intersection.

Finally, although the above Ψ± satisfy the equations of motion, we must still check

that the gauge condition can be maintained. With Ψz,Ψz̄ set equal to zero, we have

DmAm = −2(∂+a−Ψ− + ∂−a+Ψ+) = 0 , (B.42)

which is just the standard Lorentz gauge condition in 1 + 1 dimensions. Since Ψ+,Ψ− are

linearly independent functions of z, the gauge condition can only be satisfied by taking

∂+a− = ∂−a+ = 0 . (B.43)

If we were dealing with a U(1) gauge field this would imply that the field strength vanishes.

However, in the non-Abelian case there is the term F
(2)
+− ∼ a+a−. It follows from (B.43)

that this corresponds to a non-propagating electric field along the intersection, which is,

of course, what one would expect.

B.4.2 The Az, Az̄ zero-modes

Now let us suppose that

Ψ+ = 0 . (B.44)

The equations (B.28), (B.29) are consistant with taking (Ψz)
∗ = Ψz̄, as they should be

since the reality of the gauge field requires it. Now, recall from the supergravity solution

that

ea(z,z̄) = τ2g(z)ḡ(z̄) , where g(z) ≡ η2(τ̄ (z))
∏24

n=1(z − z
(n)
i∞ )1/12

. (B.45)
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Hence, ∂(a−log τ2) = ∂ log g is a holomorphic function and the operators (∂−∂a+∂ log τ2),

∂̄ commute. Thus the general solution for Ψz,Ψz̄ is given by

Ψz(z, z̄) = ᾱ(z̄)g(z) + β(z) , Ψz̄ = α(z)ḡ(z̄) + β̄(z̄) , (B.46)

where α(z), β(z) are arbitrary holomorphic functions. We can quickly eliminate one of

these functions by considering the question of normalizability. If β(z) is nonzero, then

the integral over the transverse space will contain a term
∫

τ2|β|2. Since τ2 → const > 0

as z → ∞, it is clear that this can not be normalizable for any function β entire on C.

Therefore we may take

β = 0 . (B.47)

In order to fix α(z), however, we will need to consider how Ψz,Ψz̄ transform under SL(2,Z).

One can check that the following Lorentz and SL(2,Z) covariant equation of motion

reduces to (B.28):

(Di − q∗(ǫij − gij)Qj)(Di + q(ǫik − gik)Q
k)Ψz = 0 , with q = i . (B.48)

Using this we can derive the transformation law of Ψz under SL(2,Z). Under τ → Λτ we

have

∆i(ǫij − gij)Q
j = −i(ǫij − gij)∂

iϕ =

{

2i∂zϕ, i = z

0, i = z̄

=

{

−∂ log (cτ̄ + d), i = z

0, i = z̄
. (B.49)

Therefore we require

Ψz → elog (cτ̄+d)Ψz = (cτ̄ + d)Ψz . (B.50)

For Ψz̄ the manifestly covariant equation of motion is

(Di + i(ǫij + gij)Qj)(Di + i(ǫik + gik)Q
k)Ψz = 0 , (B.51)

which leads to the expected transformation rule

Ψz̄ → (cτ + d)Ψz̄ . (B.52)

These rules mean that Ψz,Ψz̄ should be invariant under T and change sign under

S2. Therefore, they should be antiperiodic around the O7-planes. The function g(z) (and

its conjugate) has just these properties, reasoning along the same lines as we did for the

fermionic zero-mode solutions. Thus we may take α(z) = const so that

Ψz(z, z̄) =
η2(τ̄ (z))

∏24
n=1(z − z

(n)
i∞ )1/12

, Ψz̄(z, z̄) =
η̄2(τ(z̄))

∏24
n=1(z̄ − z̄

(n)
i∞ )1/12

. (B.53)
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To see that α = const is the only solution, observe that

∫

τ2ΨzΨz̄ =

∫

τ2|g|2|α|2 =

∫

ea|α|2 . (B.54)

Then by the same arguments as in the last section, we must have α = const for normaliz-

ability.

When we combine the anti-periodicity of the transverse wavefunction with the extra

minus sign coming from the action of Ω on these string modes, we see that the Az, Az̄

zero-modes must transform in the symmetric tensor representation of O(Nc). Hence they

have the right quantum numbers to be the remaining two scalars that complete the SO(8)v
transverse fluctuation modes of the 1+1-dimensional theory. This is what we would expect;

T -duality in a given direction maps the component of the gauge field in that direction to

a scalar representing transverse fluctuations.

Note that for this solution we set Ψ+ = 0, but it was not necessary to set Ψ− to zero.

Since ∂zΨz̄ = ∂z̄Ψz = 0, the gauge condition reduces to ∂+A− = 0. Thus we may either

have Ψ− = 0 or ∂+a− = 0. This is pure gauge from the 1 + 1-dimensional point of view.
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